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Abstract

Measuring neutrino CP violation and mass hierarchy is currently one of the
biggest challenges in particle physics. The DUNE neutrino experiment is the
next-generation flagship neutrino program in the US designed to solve these prob-
lems. The DUNE detector uses liquid argon time projection chamber (LArTPC)
technology, considerably improving the spatial resolution, neutrino detection effi-
ciency and background rejection. However, reconstructing neutrino events with
DUNE presents many challenges due to missing energy caused by argon impurities,
nonlinear detector energy responses, invisible energy, hadron identities (mass), and
overlaps between lepton and hadron interactions. One way of approaching this
problem is using machine learning to reconstruct the neutrino events from pixel
map images of interactions in the detectors. Here we present a regression convo-
lutional neural network with a custom architecture to reconstruct neutrino energy
and interaction vertices. For neutrino energy, we show considerable performance
improvements in Monte Carlo simulations, compared with previous traditional
energy reconstruction methods and initial results in interaction vertices.

1 Introduction

Neutrinos are extremely weakly interacting subatomic particles of considerable interest due to many
strange properties that could provide a window into understanding the fundamental laws of physics.
A particularly curious phenomenon is the oscillation between different types of neutrinos (flavors),
which prove they have mass. A large experimental physics program[1, 2] has been set up to study the
parameters that affect this oscillation probability, as a function of neutrino energy.

Neutrino interactions are rare and complicated making these measurements quite challenging. The
next-generation experiment, DUNE is uniquely positioned to overcome these challenges by using
liquid argon time projection chamber (LArTPC) technology, considerably improving the spatial
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resolution, neutrino detection efficiency and background rejection[3]. The goal of the experiment
is to measure the oscillation probability between νµ and νe flavors. To measure the oscillation
parameters it is crucial to accurately reconstruct the neutrino energies and interaction points from
the finely observed details of the interaction. However, reconstructing neutrino events with DUNE
presents many challenges due to missing energy caused by argon impurities, nonlinear detector
energy responses and overlapping particle trajectories. Here we describe a convolutional neural
network approach to reconstruct neutrino energies and interaction vertices at DUNE with a custom
architecture suited towards this kind of regression problem. We estimate νe and νµ energies and
νe interaction vertices with these models. These techniques have been very successful in particle
physics due to their capacity to work with very complex data and the fact that many events can be
represented as images[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Neural networks have been previously
used at NOvA for flavor tagging, oscillation physics, electron neutrino energy and electron energy
prediction[15, 16, 17] and have also been used in other neutrino experiments.[18, 19, 20, 21, 22].

2 The DUNE experiment

DUNE, located in South Dakota, will consist of 4×10kT modules filled with Liquid Argon (LAr)
to detect neutrinos from a high-power neutrino beam from Fermilab, near Chicago, 1300km away.
Charged particles produced from neutrino interactions, traverse and ionize the LAr producing
electrons that drift horizontally towards the anode by an electric field. In the single-phase detector
modules, the anode consists of two induction wire planes (U, V) oriented at 60◦ to each other and
a collection plane, oriented vertically (Z). The wire planes measure the number of electrons and
where they are drifting from the detector. Combined with the time of electron drift, they enable a 3D
reconstruction of the neutrino interaction by looking at the digitized charge readout in the U-T, V-T
and Z-T projections. The cartesian coordinates, (X, Y and Z) are obtained from a transformation of
the 3 projections, where the time of electron drift, T is mapped to X and the combination of U and V
mapped to Y, with Z denoting the third dimension.

Figure 1: Pixel Maps for νe interactions in the three projections

Figure 2: Pixel Maps for νµ interactions in the three projections

2.1 Data Samples

We create the dataset using the standard DUNE simulation chain[23] for neutrino interactions. The
charge readout from drifting electrons is deconvoluted from detector effects by subtracting the noise
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profile and dividing out the electronics response in Fourier space. The charge pulses at each wire-
plane (hits) are then disambiguated and fit with a gaussian shape to measure the total charge and the
peak time for each hit. Clusters of hits are collected in each of the 2D projections and then combined
into a 3D representation by matching the collection of hits in each projection.[23]

The traditional kinematic approach to reconstructing neutrino energies involves calibrating the total
measured charge readout (ADC) from the leptonic and hadronic portion of the neutrino interaction to
the expected true energy of the particle in the simulation. This is done separately because the leptonic
and hadronic portions have quite different topologies and charge deposition profiles. The results are
then summed to give an estimate of the neutrino energy.

For our purposes, we use an image representation of the entire interaction directly and feed it into our
model. This side steps the complicated reconstruction required in charge calibration and topology
identification, which may not reach the desired accuracy. These high resolution images are coarsened
by merging different time ticks and wire-planes for computational feasibility in training. For νµ
interactions where the leptonic portion is characterized by very long µ-tracks resulting in extremely
large images (6720 ticks×2800 wires), we merge 7 wires and 24 time ticks, resulting in a 280×400-
pixel image. We use 625000 events for training and testing the estimation of νµ energy. For νe
interactions, where the leptonic portion is a much shorter electron shower, we merge 6 time ticks,
also resulting in a 280×400-pixel image. These images contain 90% of all the hits in the interaction
on average. We use 930000 events to train and test our model for νe energy and vertex regression.
Sample images for νe and νµ can be seen in figure 1 and 2 respectively. We only use samples which
are fully contained inside the fiducial volume of the detector.

To find the interaction vertex, even a 280×400-pixel image is quite large, so proceed in two stages.
The first stage estimates the wire-plane and time tick closest to the vertex, which is computationally
feasible due to the integer target variable. The second stage uses a smaller 24×40-pixel image around
the output of the first stage to estimate the interaction vertex as a continuous variable. Here we use
the same examples as in the νe energy training.

For all the datasets above, the charge readout in each pixel is normalised between 0 and 1, by a
constant scaling of 500. Different normalisation methods were found to not affect the result in any
significant way.

3 Models

3.1 Energy Regression

The model consists of three towers, one per image plane (U, V, Z) and can be visualized in figure
3. Each tower has a 7x7 convolutional layer followed by a 3x3 max pooling, both with 2x2 strides.
Next a 1x1 convolution and a 3x3 convolutional layer with 1x1 stride is used followed by a 3x3 max
pooling layer with 2x2 stride. Then two Inception blocks[24] and a further max pooling layer is used
at the end of the tower. Afterwards the towers are concatenated and passed through another Inception
block with an average pooling layer and a linear layer for calculating the energy. All convolutional
layers use rectified linear units[25]. The models are trained using Adam[26] with learning rate 0.001
and batch size 16. The learning rate was multiplied by 0.25 if no improvement was found on the
validation loss after 4 epochs. Adding dropout[27] or L2 norm for regularization did not improve
performance compared to the base model. The same architecture and hyper-parameters were used for
νµ energy. All models were trained using Keras [28] with a Tensorflow [29] backend.

Each event in the training is weighted to flatten the input energy distribution in order to remove any
bias towards the energy distribution. The model was trained using a mean scaled error loss using
these event-wise weights.

L(W, {xi, yi}ni=1) =
1∑n

i=1

√
wi

n∑
i=1

√
wi

∣∣∣∣fW (xi)− yi
yi

∣∣∣∣ (1)

3.2 Vertex Regression

For the first stage of the interaction vertex model, the architecture and hyper-parameters are the same
as in the energy prediction except the last layer is substituted with the wire-plane and time tick closest
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(a) νe and νµ (b) Vertex stage one (c) Vertex stage two

Figure 3: Neural network architectures for energy and vertex regression.

Figure 4: Energy regression results

to the true target vertex position instead of the energy. In the second stage the architecture is also
the same except that average pooling is used after the inception blocks instead of max pooling and
the output is flattened and concatenated with the digitized positions predicted by the first stage. The
final layer then predicts the 3-dimensional cartesian coordinates (X,Y,Z) of the vertex position. The
architecture for both stages can be seen in figure 3

Since the time ticks (representing the X coordinate) are merged by a factor of 5 in the pixel images,
the resolution in X is recovered by weighting the loss function in that dimension by the same factor.

Figure 5: Vertex regression results

4 Results and Future Work

Figure 4 shows that our model energy estimate outperforms the kinematic method significantly. The
resolution from a gaussian fit to the distribution for our model is 7.2% and 12.5% compared to 13.1%
and 19.0% from the kinematic model, for νe and νµ respectively. This represents an improvement of
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∼40% over traditional techniques. From Figure 5, the resolution of the vertex coordinates is 0.98cm,
1.98cm and 1.67cm for X, Y and Z respectively, which is quite promising.

Further improvements to the training are being planned. For example extending the νµ samples with
uncontained events where the µ tracks exit the detector, which traditional techniques find extremely
challenging to estimate. Also, using sliding pixel maps across the µ-track could further improve
the resolution on νµ events due to its topology. Finally the vertex model will be compared to other
techniques currently being developed.

Our work shows using convolutional neural networks for νµ and νe energy estimation beats state of
the art approaches by a large margin and shows promising results for vertex estimation. Using these
techniques show a promising path towards furthering the physics program of the DUNE experiment.
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