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Abstract

Data fields sampled on irregularly spaced points arise in many applications in
the sciences and engineering. For regular grids, Convolutional Neural Networks
(CNNs) have been successfully used to gain benefits from weight sharing and
translational invariance. We generalize CNNs by introducing methods for data on
unstructured point clouds based on Generalized Moving Least Squares (GMLS).
GMLS is a non-parametric technique for estimating linear bounded functionals
from scattered data, and has recently emerged as an effective technique for solving
partial differential equations. By parameterizing the GMLS estimator, we obtain
learning methods for linear and non-linear operators with unstructured stencils.
In GMLS-Nets the necessary calculations are local, readily parallelizable, and
the estimator is supported by a rigorous approximation theory. We show how
the framework may be used for unstructured physical data sets to perform func-
tional regression to identify associated differential operators, develop predictive
dynamical models, and obtain feature extractors to predict quantities of interest.
The results show the promise of these architectures as foundations for data-driven
model development in scientific machine learning applications.

GMLS-Nets: Neural Networks for Scattered Data Sets
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Figure 1: GMLS-Nets. Scattered data inputs are processed by learnable operators τ [u] parameterized
via GMLS estimators. At each location, point data is encoded as coefficient vectors a by equation 2
input to learnable mapping qx̃,ξ(a(u)) of equation 3. GMLS-Layers can be stacked to obtain deeper
architectures for classification and regression tasks (inset, SD: scattered data, MP: max-pool, MLP:
multi-layer perceptron).

Implementations in TensorFlow and PyTorch are available at https://github.com/rgp62/gmls-nets
and https://github.com/atzberg/gmls-nets.
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Many scientific and engineering applications require processing data sets sampled on irregularly
spaced points. Such settings include e.g. sensors associated with data sites evolving under unknown
or partially known dynamics, or scientific simulation data over unstructured meshes. Recently, there
has been an increasing interest in scientific machine learning (SciML) [2] targeting data-driven
techniques for the sciences. Here, data is often scarce or highly constrained, suggesting the most
successful SciML strategies will leverage prior knowledge to enhance information gains [1, 2]. This
could include physical properties and invariances, such as transformation symmetries, conservation
structure, or mathematical knowledge such as solution regularity [1, 3, 6, 11]. We introduce methods
here based on Generalized Moving Least Squares (GMLS). Several works seek similar extensions
of CNNs to unstructured data [4, 5, 13, 14, 19]; a notable feature of the current approach is that it
results in efficient, local, highly parallelizable problems.

GMLS is a non-parametric functional regression technique to construct approximations of linear,
bounded functionals. On a Banach space V with dual space V∗, we estimate target functional τx̃[u] ∈
V∗ acting on u = u(x) ∈ V, where x, x̃ denote locations in compact domain Ω ⊂ Rd. We assume u
is characterized by an unstructured collection of sampling functionals, Λ(u) := {λj(u)}Nj=1 ⊂ V∗.
We construct the estimate by considering P ⊂ V and seek an element p∗ ∈ P which provides an
optimal reconstruction of the samples in weighted-`2 sense

p∗ = argmin
p∈P

N∑
j=1

(λj(u)− λj(p))2
ω(λj , τx̃). (1)

Here ω(λj , τx̃) is a kernel function weighting the spatial correlation between the target functional
and sampling set. If one associates locations Xh := {xj}Nj=1 ⊂ Ω with Λ(u), one may select a radial
kernel ω = Wε(||xj − x̃||2) with compact support r < ε. Using basis P = span{φ1, ..., φdim(P)}
and denoting Φ(x) = {φi(x)}i=1,...,dim(P), the optimal reconstruction of u over P and subsequent
GMLS estimate of τx̃ are given by

p∗ = Φ(x)ᵀa(u), τhx̃ [u] = τx̃(Φ)ᵀa(u). (2)

The GMLS estimator thus parameterizes the dual space V∗ by applying the operator to the optimal
reconstruction using encoding vector a. To construct a framework appropriate for non-linear operators,
we consider the more general form

τhx̃ [u] = qx̃,ξ(a(u)), (3)

where qx̃,ξ now is a family of possibly nonlinear mappings parameterized by ξ. For simplicity in this
work, we specialize by taking: Λ as point evaluations on Xh; P as πm(Rd), the space of mth-order
polynomials; Wε(r) = (1− r/ε)p̄+ for p̄ ∈ N. We emphasize that the framework may be applied
more generally using choices of Λ, P, or ω tailored to a given application or physics. For theoretical
underpinnings, structure preservation, PDE solvers on manifolds, and other recent applications, we
refer readers to [7, 9, 15, 16, 18].

To build SciML architectures, we construct GMLS-Layers whereby GMLS provides an encoder of
data over P, expressed via the coefficient vector a(u), which is then passed into the parameterization
Eq. 3. The hyperparameters ξ may be estimated via gradient descent, and we thus obtain an
architecture similar to convNets benefiting from weight-sharing that is stackable with appropriate
meshfree generalizations of pooling operators acting over ε−ball neighborhoods of data (Fig. 1).
We explore two possible parameterizations in this work, a linear mapping qx̃,ξ(a(u)) = ξᵀa(u) for
ξ ∈ Rdim(P), and a nonlinear mapping by multilayer perceptrons qx̃,ξ(a(u)) =MLPξ(a(u)) where
ξ correspond to weights and biases of a dense network with ReLU activation functions.

1. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC.,a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.
This paper describes objective technical results and analysis. Any subjective views or opinions that might be
expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United
States Government.
* Work supported by DOE Grant ASCR PhILMS DE-SC0019246.
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Data-driven Modeling of Physical Systems

Many scientific data sets are generated by processes for which there are expected governing laws
expressible in terms of ordinary or partial differential equations. GMLS-Nets provide natural features
to regress such operators from observed state trajectories or responses to fluctuations [17]. We
consider learning the following finite difference (FDM) and finite volume (FVM) updates of the
dynamics ∂u

∂t = L[u(t, x)], where L[u] can be a linear or non-linear operator and un = u(tn),
tn = n∆t are snapshots of the system state at discrete times.

un+1 − un

∆t
= LFDM [{uk}k∈K; ξ],

un+1
i − uni

∆t
=

1

µ(ci)

∑
f∈Fi

∫
LFVM [un+1; ξ] · dA]. (4)

Here Fi are cell boundary faces, and µ(ci) the volume of cell ci. The latter is appropriate for
extracting models which discretely preserve conservation properties.

The learning capabilities of GMLS-Nets to regress differential operators are shown in Fig. 2, and
details may be found in [17]. In these examples, weight-sharing is exploited so that a FDM/FVM
scheme may be extracted from either a single snapshot of the analytic solution (advection-diffusion)
or from a short burst of several molecular dynamics timesteps (Brownian motion). In both cases, the
extracted model provides access to larger timescales without compromising accuracy.
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Figure 2: Left Regression of Differential Operators. GMLS-Nets can accurately reproduce the
action of linear and non-linear operators; 1D/2D Laplacians and Burger’s equation are shown.
Middle: Advection-diffusion solution when ∆t = ∆tCFL, with ∆tCFL ∼ 1 and ∆tCFL � 1.
An implicit integrator causes FDM/FVM discretizations of true operator L to be overly dissipative
for large timesteps, while regressed long-time FVM operator matches the phase and magnitude of
analytic solution almost exactly. Right: GMLS-Nets can be trained with molecular-level data to infer
continuum dynamical models. Data are simulations of Brownian motion with periodic boundary
conditions with the GMLS-Net trained using FVM estimator of equation 4. Predictive continuum
model for the density evolution is obtained with good long-term agreement.

Feature Extraction in Fluid Mechanics for Characterization and Prediction

GMLS-Net on unstructured fluid simulation data.

We consider now a SciML application concerning the learning of engineering quantities of interest
from unstructured simulation data for the canonical fluid mechanics problem of flow past a cylinder
of radius a. To construct a training set, we use a finite volume (FV) code [8] to generate steady state
solutions of the Reynolds-Averaged Navier Stokes (RANS) equations with k − ε turbulence model
[12], applying velocity inflow conditions ranging over input velocity U∞ ∈ [0.1, 20] and viscosity
ν ∈

[
10−2, 108

]
, and calculating the drag force Fd experienced by the cylinder. We then extract the

velocity field U from cell centers of the FV mesh. In this manner, we obtain an unstructured data set
with features U scattered in space, and force characterized by drag coefficient Cd. We do not provide
either U∞ or ν as features. We construct 400 simulations in this manner, use 80% for training and
the remainder as a test set (Fig. 3), obtaining a root mean square accuracy of > 98.5%. Note that
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Figure 3: GMLS-Nets are trained on a CFD data set of flow velocity fields while hiding viscosity,
inflow condition, and pressure. Left: Predicted drag coefficient plotted as a function of Reynolds
number for CFD predicted training set (small black dots) and GMLS-Net predicted test set (large
red dots). Note that Reynolds number is provided to show data collapse and not used as the training
feature. Right: Flow velocity fields corresponding to the smallest (top) and largest (bottom) Reynolds
numbers in test set.

while Cd would be post-processed from U, p, and ν in a CFD calculation, we seek here to recover it
from only U . This partial characterization is representative of e.g. particle image velocimetry (PIV)
calculations.

We highlight several remarkable features of this result. First, drag requires knowledge of both velocity
and pressure to calculate the hydrodynamic stresses acting on the cylinder. As we only train on the
velocity field, the network is learning to instead characterize drag from flow features. It is well-known
that drag may be characterized by the Reynolds number Re = U∞a/ν, and that Re correlates with
flow features such as the length of recirculation zone [10]. Traditional engineering analysis applies
nondimensional analysis to extract a functional relationship of the form

2Fd
ρU2
∞A

= Cd

(
Ua

ν

)
, (5)

and the drag coefficient Cd : R→ R provides collapse of experimental data onto a single curve. This
process requires engineering judgement to identify relevant non-dimensional groups, and is typically
applicable only to simplified flows. In contrast, this data-driven approach is able to extract an accurate
drag prediction without knowledge of ν - suggesting it is able to exploit structure with only partial
knowledge of physics. Note that no surrogate velocity field U or p are extracted or approximated;
GMLS-Net is able to regress drag directly from the velocity field.

While included here as a simple illustration of GMLS-Nets’ ability to naturally handle simulation
data relevant to SciML problems, this result translates easily to important engineering problems: e.g.
in PIV one may only extract velocity data while pressure data is intractable. This result suggests
that important engineering quantities of interest may still be characterized in this setting, despite
the lack of complete measurements. While the considered RANS model is a simplistic model with
known issues for flows involving recirculation, it provides a simple demonstration of the potential
for GMLS-Nets to learn features from more sophisticated computational and experimental flow
characterizations.

In conclusion, we demonstrate that GMLS-Nets is capable of obtaining dynamical models for long-
time integration beyond the limits of traditional CFL conditions, for making predictions of density
evolution of molecular systems, and for predicting directly from flow data quantities of interest in
engineering applications. These initial results indicate some promising capabilities of GMLS-Nets
for use in data-driven modeling in scientific machine learning applications.
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