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Abstract

The redshift of a galaxy uniquely determines its distance in our expanding universe.
The colors of a galaxy measured in different bands constrain the approximate
“photometric” redshift, although the prediction models are imprecise and improving
these estimates is a hot topic in cosmology. We use machine learning models to re-
fine the photometric redshifts of galaxies using their spatial structure organized into
clusters, filaments, and walls. In particular, we test the hypothesis that additional
information from the "neighborhood" of a galaxy sharpens our photometric redshift
estimate. We demonstrate that a graph convolutional neural network — trained on
a data set of high-resolution redshift observations on a small region of the sky —
captures this information by learning to predict the redshift of all the galaxies in
a viewing region simultaneously, improving the performance over single-galaxy
redshift prediction by 10% median absolute deviation on a held-out region of the
sky.

1 Introduction

The redshift z of a galaxy corresponds to the fractional change of wavelength due to the cosmological
expansion rate of the universe. Since this expansion rate is a unique function of the distance in
a particular cosmological model, measuring redshifts are virtually equivalent to measuring radial
distances. Together with the direction of the galaxy, the redshift measurements allow us to create
three-dimensional maps of the distribution of galaxies. The cosmological information (the number
of different ingredients, the curvature, and the age of the universe) of such three-dimensional data
is about five times more than a corresponding two-dimensional map using only the directions of
galaxies.

The redshift of an astronomical object can generally be determined very accurately by identifying
absorption or emission lines of certain elements in high-resolution spectra. However, spectroscopy
is extremely expensive. Broad-band photometric observations, on the other hand, are far less time-
consuming in terms of telescope time, and measure broad wavelength ranges from a light source to
create a very rough representation of a spectrum. For this reason, spectroscopic catalogs are often
utilized as labelled training data sets to build statistical models that reconstruct the redshift of a galaxy
from a small number of colors — typically five or more. This is challenging due to measurement
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Figure 1: Spectroscopic redshift (zspec; unitless) of 2000 galaxies vs. the spectroscopic redshift for the nearest
galaxy, in terms of Haversine distance in the viewing field. The line of points along the diagonal shows the
high correlation of galaxies that are in the same cluster. Photometric redshift estimates are much less accurate
than spectroscopic measurements, so the goal of this work is to refine photometric redshift estimates using the
correlations between neighboring galaxies. The challenge lies in identifying which of a galaxy’s neighbors are in
the same cluster, given only noisy photometry data.

errors, modeling errors, and degeneracies, as different redshift can correspond to similar areas in a
five-dimensional color space, but improving these redshift estimates is ripe for rewards: the amount of
cosmological information increases almost linearly with the inverse of the photometric redshift errors.
The reason for this is that much of the information is contained in features (BAO: baryonic acoustic
oscillations) on scales that are comparable to the errors of photometric redshifts determined by state
of the art methods, which include machine learning techniques such as random forest, support vector
machines, and deep learning methods.

Since galaxies form complex structures, clusters, filaments, and walls, their redshifts are not inde-
pendent of each other. Galaxies in the same cluster have essentially the same redshift (Figure 1),
with the cluster size two orders of magnitude smaller than present photometric redshift errors. Thus
the primary challenge is to identify which of a galaxy’s neighbors are in the same cluster from
both high-variance photometery redshift measurements in the line of sight dimension and precise
measurements in the orthogonal dimensions. Filaments and walls constrain the photometric redshift
on a one and two-dimensional locus, respectively.

There have been previous attempts to use the spatial distribution of galaxies to estimate empirical
redshift distributions using galaxy clustering [1]. Indeed, it has been shown that if a subset of galaxies
has direct redshift measurements, they can improve the photometric redshift estimate of nearby
galaxies [2]. However, the interdependence of photometric redshifts is complex and not fully captured
by existing methods. In this paper, we show that graph convolutional networks provide an elegant
method of modeling these dependencies, and increase the accuracy of photometric redshift estimates
over the state of the art methods based on individual colors.

2 Methods

2.1 Graph Neural Network Architectures

The photometric galaxy observations under discussion are essentially very large, sparse, multicolor
images. Due to this sparsity, standard 2D convolutions used for computer vision tasks would be
computationally expensive even at greatly-reduced resolution, and furthermore would not be invariant
to rotations of the image. In contrast, graph convolution networks provide an efficient method for
modeling the relevant spatial structure of the data while also maintaining a sparse representation.
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By representing each galaxy as a node in a graph with edges denoted by the pair-wise Haversine
distance — the geodesic distance on a sphere — we achieve a much more compact representation of
the data and convolution operators that are invariant to both translations and rotations of the input.
This approach has proven useful for high-dimensional detectors in particle physics [3, 4].

Many formulations of graph convolution networks exist [5, 6], but the key idea is to associate
some representation with every node in a graph and apply a (learned) function to every node. This
function maps the representation of a node, those of its neighbors, and the edge annotations to a new
representation. In this work we tested three different graph convolution architectural motifs for the
task of incorporating galaxy cluster information into photometric redshift estimation.

1. Graph Convolution with Attention: A weighted average is computed over the learned
representations of a galaxy’s neighbors, where the weighting is determined by a dot product
of the galaxy’s own representation with that of its neighbors.

2. MoNet-style Architecture: This model generalizes Attention by replacing the dot-product
with a parameterized, pair-wise, weight function [6]. This is more computationally expensive
than standard attention, but we found it to be an effective architecture for this application.
Our architecture does not follow the MoNet architecture from the paper exactly — instead
of using a Gaussian weight function, we use a small neural network — so we refer to this as
a “MoNet-style” architecture.

3. Recurrent Message Passing: In the present application, each node encodes the redshift
estimate of a galaxy, and graph convolution layers help to refine these estimates by incor-
porating information ("messages") about neighboring galaxies. As suggested in [7, 8], a
recurrent architecture can apply the same function repeatedly — iteratively updating each
node until convergence.

2.2 Data Set

To date, the Sloan Digital Sky Survey [SDSS; 9, 10] has provided the most extensive collection
of spectroscopic observations of galaxies [11, 12], as it includes close to 2 million objects over an
impressive area of ≈ 14, 000 square degrees on the sky, extending out to a redshift of z ≈ 0.6. The
combined characteristics of depth, area, and source count of the SDSS spectroscopic dataset make it
an ideal data set for training and evaluating spatial photo-z methods.

We use the data set described by [1], in which each galaxy is described by five photometric features:
the r-band magnitude, and u− g, g − r, r − i and i− z colors. These were scaled to zero mean and
unit standard deviation. Spatial information is encoded as the right ascension (RA) and declination
(Dec) coordinates of each galaxy.

Because the southern sky is less homogeneous, we limit our spatial analysis to the northern sky,
specifically the range RA ∈ [130◦, 230◦] and Dec ∈ [5◦, 55◦], avoiding the boundaries of the
survey. This sky patch was subdivided into a training (RA ∈ [130◦, 183◦]) and validation (RA ∈
[187◦, 230◦]) data set, ensuring no overlap of either single galaxies or clusters. This range is large
enough that local large-scale structures are unlikely to create systematic differences in the two data
sets.

Training is performed using mini-batch stochastic gradient, where each mini-batch consists of a small
region of the sky and all pair-wise distances are included in the graph. The training region of the sky
is divided into tiles of 1.6◦× 1.6◦, then each epoch of training consists of iterating through the square
tiles (in random order); a point is sampled from a uniform distribution over this tile, and all galaxies
within a radius of 0.9◦ are included in the mini-batch. As a regularization method, we also explored
randomly dropping out 0− 10% of the objects from each circular mini-batch. During validation, we
again divide the sky patch into 1.6◦ × 1.6◦ tiles, but the circular cutouts are always placed on the tile
center points, and no objects are dropped. Thus, validation is always performed on the same set of
mini-batches in the same data format as the training data. The primary performance metric is the
median absolute deviation (MAD), where the median is taken over the validation set.

MAD = median

(
zphot − zspec
1.0 + zspec

)
(1)
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3 Results

In experiments, we found that it was difficult for a standard attention model to efficiently incorporate
neighborhood information. We reasoned that this was due to the need for selecting the few neighboring
galaxies that are in the same cluster and assigning them high weight, while ignoring the many
distractor galaxies. Thus, we focused on MoNet-style architectures, which are more flexible in how
they weight neighbors.

The best architecture was constructed in three phases. First, a single-object model was trained that
did not use any neighborhood information. This model consisted of the five photometry inputs,
three hidden layers of 512 ReLU units with 10% dropout in the last layer, and a single softplus
output trained with mean squared error. This achieved a MAD score of 0.0125 on the validation set,
and served as a baseline for comparing performance with more complex models. Next, a MoNet-
style architecture was trained to aggregate neighborhood information, using the predictions of the
first network as inputs. The networks learns a function that computes pair-wise weights from (1)
photometry features of two galaxies, (2) their estimated zphot from the single-object network, and
(3) the Haversine distance between the galaxies. The weight function has three hidden layers of 256
ReLU units and 10 linear outputs. These 10 weights are used to compute weighted averages over a
galaxy’s neighbors’ zphot, and a final segment of the network aggregates these ten weighted averages
with three more hidden layers of 256 ReLU units followed by a softplus output. This model was
trained while fixing the weights of the single-object subnetwork. In the third and final phase, the
weights of the single-object subnetwork were released and the entire model was fine-tuned together,
achieving a validation set MAD of 0.0112 — a 10% improvement over the single-object network
(Figure 2).

Additional experiments were carried out with recurrent versions of architecture above and tuned
using the SHERPA hyper-parameter optimization framework [13], albeit with smaller layers so that
training could be performed on a single GPU. So far, we have been unable to improve performance
using this approach, but we expect this to be a promising direction of future research.
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Figure 2: Predicted redshift from photometric observations using the MoNet-style model (zphot) vs. ground
truth measurement via spectroscopy (zspec) of the validation set. For each zspec bin, we also plot the median
(solid line), the 68% confidence interval (dashed lines), and 95% confidence interval (dotted lines) of the
empirical zphot.
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4 Discussion and Conclusion

Estimating redshift is critical for mapping out the 3D structure of the universe and providing the data
used to fit cosmological models. This work demonstrates the ability of graph convolutional neural
networks to increase the precision of photometric redshift estimates by incorporating spatial informa-
tion from neighboring galaxies. In our experiments with different graph convolution architectures,
we found that a MoNet-style architecture was able to reduce the median absolute deviation (MAD)
from 0.0125 — for a neural network trained on only single-object photometry features — to 0.0112,
a 10% decrease.

However, we believe the neighborhood information captured in these preliminary experiments is
incomplete, and that there is an opportunity for more sophisticated methods. A promising approach
is to apply recurrent architectures for iterative refinement, and we are currently exploring recurrent
versions of the best architecture.
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