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Abstract

While deep learning has shown tremendous success in a wide range of domains,1

it remains a grand challenge to incorporate physical principles in a systematic2

manner to the design, training and inference of such models. In this paper, we3

study the challenging task of turbulent flow prediction by learning the highly4

nonlinear dynamics from spatiotemporal velocity field of large-scale fluid simula-5

tions. We marry Reynolds-Averaging (RA) and Large Eddie Simulation (LES), the6

most promising turbulent flow simulation techniques, with a novel design of deep7

neural networks. Our hybrid model, Turbulent-Flow Net (TF-Net) is grounded8

in a principled mathematical model, and simultaneously offers the flexibility of9

learned representation. We conduct comprehensive comparisons with state-of-the-10

art baselines and observe a significant reduction in prediction error by TF-Net for11

60 frames ahead prediction. Most importantly, TF-Net is capable of generating12

physically meaningful predictions that preserve desired physical quantities such as13

Turbulence Kinetic Energy and Energy Spectrum of turbulent flow.14

1 Introduction15

Modeling the dynamics of physical processes that evolve over space and time and over multiple scales16

is a fundamental task in science. For example, turbulent flow modeling, is at the heart of climate17

science and has direct implications for our understanding of climate change. However, the current18

paradigm in atmospheric computational fluid dynamics (CFD) is physics-driven: known physical laws19

encoded in systems of coupled partial differential equations (PDEs) are solved over space and time via20

numerical differentiation and integration schemes. These methods are tremendously computationally-21

intensive, requiring significant computational resources and expertise. Recently, data-driven methods22

including deep learning have demonstrated great promises to automate, accelerate, and streamline23

highly compute-intensive and customized modeling workflows for scientific computing [1]. But24

existing deep learning methods are mainly statistically and are yet insufficient at capturing complex25

natural phenomena in physical sciences.26

Developing deep learning methods that can incorporate physics in a systematic manner is a key27

element in advancing AI for physical sciences. Towards this goal, we investigate the challenging28

problem of turbulent flow prediction from high-dimensional non-linear fluid mechanics equations.29

Several others have studied incorporating prior knowledge about physical system into deep learning.30

For example, [2] propose a warping scheme to predict sea surface temperature (SST) but are limited to31

linearized advection equations. [3, 4] develop deep learning models in the context of fluid animation,32

where being physically meaningful is less of a concern. The most relevant work to ours is [5],33

which study turbulent flow modeling and propose to incorporating physical knowledge by explicitly34
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regularizing the divergence of the prediction. However, their study focuses on spatial modeling35

without temporal dynamics. Adding regularization is also ad-hoc and difficult to adjust the parameters.36

In this work, we propose a hybrid learning paradigm that unifies turbulence simulation and represen-37

tation learning. We develop a novel deep learning model, Turbulent-Flow Net (TF-Net) that enhance38

the capability of large-scale fluid simulation methods with deep neural networks. TF-Net exploits the39

multi-scale behavior of turbulent flow and design explicit scale separation operators to model each40

range of scales individually. Building upon the most promising turbulent flow simulation techniques41

including Reynolds Averaging (RA) and Large Eddie Simulation (LES), our model replace the hand42

designed spectral filters with learnable deep neural networks. We design a specialized U-net for43

each filter to guarantee the invariance properties of the equations. To the best of our knowledge,44

our work is the first to perform spatiotemporal future prediction of large-scale turbulent flow with45

physics principles in mind. We provide exhaustive comparisons of TF-Net and baselines and observe46

significant improve in both the prediction error and desired physical quantifies.47

2 Turbulent-Flow Net48

The physical system we investigate is two-dimensional Rayleigh-Bénard convection, which is an49

idealized model for turbulent atmospheric convection. The system consists of a fluid bounded by two50

horizontal planar surfaces, where the lower surface is at a higher temperature than the upper surface.51

The sufficiently large temperature gradients causes an unstable vertical profile of density, which52

results in convective motions. The governing equations for this physical system are Naiver-Stokes53

Equations shown below, which are believed to model the physics of almost all fluid flows.54 
∇ · w = 0 Continuity Equation
∂w
∂t + (w · ∇)w = − 1

ρ0
∇p+ ν∇2w + f Momentum Equation

∂T
∂t + (w · ∇)T = κ∇2T Temperature Equation,

where w = (u, v), p and T are velocity, pressure and temperature respectively, k is the coefficient55

of heat conductivity, ρ0 is density at temperature at the beginning, α is the coefficient of thermal56

expansion, ν is the kinematic viscosity, f the body force that is due to gravity. Figure 1 shows a57

snapshot of the u and v velocities, the spatial resolution of which is 1792 by 256 pixels in our dataset.58

Figure 1: A velocity field (u and v) in the dataset.

Scientific numerical simulation mostly rely on mathematical modeling of first principles, assisted59

by high-performance computing. Dominant approaches typically involve approximations of the60

underlying physical processes, followed by mathematical discretization including Direct Numerical61

Simualtion (DNS), Reynolds Averaged Navier Stokes (RANS) and Large Eddie Simulation [6].62

However, the simulation process is highly computational expensive not generalizable. It means that63

when the system input has to be adjusted, even slightly, in most of the cases the time-consuming64

procedure has to be repeated from scratch. The high-level design of TF-Net is inspired by the65

multi-scale modeling of turbulent flows. Multi-scale methods use explicit scale separation operators66

to split turbulent flows into into several parts in the wave number space, then use different specific67

numerical treatments for each range of scales of the flow, and particularly treat the scales which68

are associated to the largest computational costs with less accuracy than the other ones. Detailed69

descriptions of Reynolds-Averaged Method and Large Eddy Simulation are in [7, 8].70

Reynolds-Averaged Method The hypothesis behind this Reynolds decomposition is that there are
at least two widely-separated time scales, which means any turbulent quantity can be divided into a
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time-averaged value w̄ and a fluctuating quantity w′ as below, where w̄ is the weighted average.

w(x, t) = w̄(x, t) +w′(x, t), w̄(x, t) =
1

T

∫ t

t−T
G(s)w(x, s)ds

Figure 2: Model architecture of TF-Net, three
modules with shared decoder correspond to three
scale separation. Each module consists of a U-net
with encoder and decoder structure.

Large Eddy Simulation Similar to Reynolds-
Averaged Method, Large Eddy Simulation also
decompose the flow variables into a large-scale
part and a small-scale parts but the large-scale
part purportedly defined by a filtering process.
The filtered variable ũ is usually expressed as a
convolution product by the filter kernel G that
is often taken to be a Gaussian kernel.

w(x, t) = w̃(x, t) +w′(x, t),where

w̃(x, t) =
1

T

∫
G(x|ξ)w(ξ, t)dξ

Hybrid LES/RA Method The hybrid LES-71

RA Method is a three-level decomposition with72

the spatial filtering operator G1 and the tempo-73

ral average operator G2 from the previous two74

methods. We can define:75

w∗(x, t) = G1(w) =
1

T

∑
ξ

G1(x|ξ)w(ξ, t)

w̄(x, t) = G2(w∗) =
1

T

t∑
s=t−T

G2(s)w∗(x, s)

w̃ = w∗ − w̄, w′ = w −w
′
, w = w̄ + w̃ +w∗

Figure 2 shows the architecture of our model TF-Net. The general idea behind TF-Net is multi-level76

spectral decomposition, which is to separate the velocity into three components of different scales77

with two scale separation operators, the spatial filter G1 and the temporal filter G2. In the traditional78

numerical methods, these two filters are usually pre-defined, like the Gaussian spatial filter, but both79

filters are set as learnable parameters in our model. The spatial filtering process can be realized by80

applying one convolutional layer with single 5×5 filter to each input images. The temporal filter is81

implemented with a convolutional layer with single 1×1 filter applied to every T images.82

After scale separation, we use three identical encoders to encode and learn the transformations of83

the three components respectively, and pass the hidden states to decoder which is supposed to learn84

the interactions among these three components and generate the final prediction of the next velocity85

fields. Each encoder and the decoder together can be viewed as a small U-net with skip connections.86

To produce multiple time-step forecasts, we train and use our model auto-regressively, which means87

the model always make one-step ahead prediction and the predicted image is fed back to the inputs.88

3 Experiments89

3.1 Setup90

We compare our model with a series of strong baseline models.91

• ResNet[9]: thirty-four layer ResNet with a convolutional output layer.92

• ConvLSTM[10]: three layer Convolutional LSTM .93

• U-net[11] : four layer encoder and four layer decoder.94

• GAN[12]: U_net trained with adversarial loss.95

• U_con: U_net with the divergence ||∇ · w||2 as a regularizer96
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• PDE-CDNN[2]: linearized advection equations (w · ∇)u.97

• DHPM[13]: numerical solver where finite difference is approximated by auto-differentiation.98

The dataset for our experiments is two dimensional turbulent flow velocity vector fields simulated99

with a Lattice Boltzmann Method [14]. The spatial resolution of each image is 1792 by 256. Each100

image has two channels, one is the turbulent flow velocity along x direction and the other one is the101

velocity along y direction. Figure 1 is a sample of velocity fields. For the control parameters during102

numerical simulation, Prandtl number is 0.71, Rayleigh number is 2.5× 108 and the maximum Mach103

number is 0.1. The dataset contains 23000 high-resolutions images.104

We divided each image into 7 sub-regions of size 256 by 256 pixels, then downsample them into105

64 by 64 pixels images. We used sliding window generating 9870 samples of sequences of velocity106

fields, including 6000 training samples, 1700 validation samples and 2170 test samples. The hyper-107

parameters are tuned using a validation set based on averages RMSEs of six steps ahead prediction.108

We predicted velocity fields up to 60 steps ahead. All results are averaged over three runs.109

3.2 Results110

We compare the Root Mean Square Error (RMSE) of all predicted pixel values over both u and v111

channels. Figure 3 shows the growth of RMSE with prediction horizon up to 60 time steps ahead. We112

can see that TF-Net outperforms other methods, and constraining it with divergence free regularizer113

||∇ ·w||2 can further improve the performance. Figure 4 shows the divergence of the all the methods114

w.r.t the ground truth data (target). Again, TF-Net is the closest to the numerical simulation.

Figure 3: RMSE vs. Forecasting Horizon Figure 4: Divergence vs. Forecasting Horizon

Figure 5: The Energy Spectrum of TF-Net and the best baseline U-net. The left one is the energy
spectrum plot on small wavenumbers and the right one is the spectrum on large wavenumbers.
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115

We also compare the energy spectrum of turbulence, E(k), which is related to the mean turbulence116

kinetic energy per unit mass as
∫∞
0
E(k)dk = ((u′)2 + (v′)2)/2. k is the wave number. The large117

eddies have low wave number and the small eddies have high wave numbers. The spectrum tells how118

much kinetic energy is contained in eddies with wave number k. Figure 5 shows the energy spectrum119

of our model and the best baseline. We can see that TF-Net predictions are in fact much closer to the120

target on large wavenumbers and more stable on small wavenumbers compared with U-net. Extra121

divergence free constraint does not affect the energy spectrum of predictions. We also provide videos122

of predictions by TF-Net and several best baselines in https://www.youtube.com/watch?v=123

sLuVGIuEE9A and https://www.youtube.com/watch?v=VMeYHID5LL8, respectively.124

4 Discussion125

We propose a novel physics-informed deep learning approach to predict the spatio-temporal evolution126

of a turbulent flow. Our method TF-Net unifies LSE/RA and deep neural networks. It exploits127

multi-scale modeling and design explicit scale separation operators to model each range of scales128

individually. When evaluated on a large turbulent flow dataset, TF-Net outperforms state-of-the-art129

baselines in terms of RMSE and can preserve desired physical quantities such as Turbulence Kinetic130

Energy and Energy Spectrum of turbulent flow. Future work involves incorporating other variables131

such as pressure and temperature as a joint prediction task.132
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