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1 Introduction

Proteins are multi-scale biomolecular machines with coupled structural organizations across time and
length scales. Each level of these structural organizations links to some functional behaviour and
the related scales can span across several orders of magnitude [[1]. Understanding protein dynamics
across scales is especially important in a problem such as peanut allergy, an immunoglobulin
E (IgE)-mediated hypersensitivity [[10]. The mechanism of an allergy reaction elicitation is so poorly
understood that there is yet no methodology that can a priori robustly predict the allergenicity of a
protein.

Allergen protein studies has been focused on epitopes and critical residues. Epitopes are linear
fragments of digested proteins that can bind to IgE in experiments. The major peanut allergen Ara h
1 is identified with at least 23 stable epitopes [13| [11}[12]. Among these epitopes, No. 8 and 14 are
immunodominant, as they can bind to most of the IgE samples. Site-directed mutagenesis showed
that point mutations at certain residues have strong impact on their binding affinity [[14]. Therefore,
these residues are called critical residues. Negative proteins are structurally similar to allergens,
but they do not exhibit allergenic potential. Distinguishing between allergens and negative controls
remains difficult computationally. Oxalate decarboxylase (OxdC) shares 40% sequence similarity
and 68.6% structural similarity with Ara h 1. Another negative control, MnCA (Mn2+-cupin A), is
21% sequentially and over 68.4% structurally similar to Ara h 1. Neither has been shown to trigger
allergenicity so far, even though they are structurally clustered together within their superfamily [15].
Understanding peanut allergens at the molecular level and differentiating the dynamics among similar
proteins is therefore important for shedding light to the problem of peanut allergenicity.

A series of computational methods have been developed to extract information from allergen proteins,
and infer their allergenic potential. However, differentiating similar proteins based on their allergy-
triggering capability is still difficult [16} 17,118} [19]. If not large-scale molecular simulation studies
that is specifically designed and optimized, atomic-level simulation methods are still prevented
from reaching functionality related scales [2, 3, 14} 15, 16]. In order to reach the scales where global
dynamics of proteins are accessible, coarse-graining methods have been proposed with certain levels
of success [[7, 18, 9], at a cost of loss of generality and of smearing the detailed physico-chemical
atomic interactions.

We address the question of peanut allergenicity from a dynamics perspective, by studying the
dynamics on graphs that are encoded with protein structural information at the atomistic level. In
the meantime, we develop a computational mutation method to identify hot spots, residues that
impact the global dynamics of an allergen. So far as we know, this is the first time that a multi-scale
graph-partitioning method is applied for allergy understanding.
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2 Methodology

We apply Markov Stability [21] to analyse the allergen graph, an undirected, weighted atomic graph
generated from the allergen protein conformation using energy functions. The conformation can
be obtained from the RCSB Protein Data Bank [20], amongst many public structural repositories.
By optimizing Markov Stability value at each Markov time, we find the optimized partition where
a random walk is most likely to remain. Significant partitions are obtained in increasingly coarser
communities. In the case of a protein graph, this process allows us to scan across resolutions and find
clusters corresponding to meaningful biochemical groups at different granularities. These groupings
correspond to groups of atoms moving coherently across certain scales. The duration of the partition,
together with its robustness to perturbation, allows us to map out dynamical properties of the protein.

Let us define an undirected and weighted graph G(V, E), denoted by the adjacency matrix A of
rank n. The vertex degrees of the graph are d; = ZZ A;j;, and the degree matrix is defined as

D = diag(d). On such a graph, we consider a continuous-time Markovian process that is governed
by the combinatorial Laplacian, L = D — A, as most appropriate for protein dynamics:
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where (d) = (17 D1)/N is the average degree and P = pD~*. Now the stationary distribution
correspondingly is the uniform distribution over all nodes: = = 17 /N.

Markov Stability is then defined as

r(t, P) = tr(H” e L/ _ 277 1H) )

where c is the number of communities in the partition; H is a N x ¢ indicator matrix of P with
entries H;; equal to 1 if node ¢ belongs to community j and O otherwise; 7. denotes the stationary
distribution defined above, and II. are the diagonal elements of 7. The time ¢ is the Markov time or
a dimensionless resolution parameter.

We use the Louvain algorithm, a greedy agglomerative method [22]], to solve the partitioning problem.
The Louvain algorithm is deterministic, but the final solution depends on the order in which the
different nodes are scanned initially. This initial ordering, or the Louvain initial condition, can be
chosen at random every time the calculation is executed. We use the variability induced by our random
choice of the Louvain initial conditions, i.e. the Variation of Information (VI) [23]], to estimate the
robustness of a partition. Other perturbations affecting edge weights or the quality function, for
example, have been considered in the past and shown to yield similar results [21]. We also developed
a linearised version of Markov Stability, which can produce similar partition results, with 20X times
or more speed-up, depending on the protein structure.

Another question of interest is the identification of hot spots that significantly impact the pro-
tein global dynamics when altered locally. To mimic in silico the process of this mutation pro-
cedure on the protein graph, we remove all edges representing weak interactions with respect to
the side chain of an amino acid node group. Then, the mutated graph is partitioned using Markov
Stability. We identify the mutations by filtering the outliers of robustness ensemble of multiple
mutations along with the VI vector of the original protein graph, using Gaussian process regres-
sion (GPR) [24]. The calculation can be realized using public libraries such as the gpml MATLAB
toolbox (http://www.gaussianprocess.org/gpml/code/).

3 Experiments

The zooming at different resolutions starts by finding chemical groups at high resolution, then onto
amino acids and secondary structures, followed by segments and functional domains, and finally
merging all parts of the structure (Figure 1). From Markov time of 105 onwards, Ara h 1 exhibits
well-defined communities mostly by long plateaux. At longer time scales, where typically proteins
are functional, we observe the long-lived and robust communities in the two-barrel separation. This
is in line with how a protein with such an architecture should behave and agrees with our work on
other proteins. Interestingly, the intermediate time scales indicate less robustness. For example, the
VI of the four-way partition is unusually variable. Additionally, the N-terminus segment between F14
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Figure 1: Structural anatomy of the allergen Ara h 1 at all scales. (A) The atomistic structure of the
core of the monomer of Ara h 1 (PDB ID: 3S7E), (B) Markov Stability analysis of the core of the
Ara h 1 monomer. As the Markov time increases, we recover first the meaningful biochemical levels
of organization (chemical groups, residues and secondary structures), followed by large segments
partly corresponding to reported epitopes and finally partitions of the two large barrels. The detailed
community organization of the protein during the intermediate to slow time scales is presented in
(C). Eventually the protein partitions in the two-barrel domains. The varying VI is unusual with
merged flanking regions. (D) Correspondence between communities across intermediate timescales
and epitopes. The most persistent partition is linked with epitope 8, the immunodominant segment.

and R17 is partitioned into three consecutive communities. Indeed, it is difficult to find a reasonable
partitioning in this region. This lack of partitioning shows that the allergen protein structure is
susceptible to local disturbances and may also imply its adaptability to multiple conformations for
IgE binding or further aggregation.

Certain communities across those intermediate time scales correlate with some of the proposed
epitopes. At each time step, each community was sequentially compared with each of the experimental
epitopes by overlapping their atoms. As all Ara h 1 epitopes are linear, communities with breakages
were not considered. When one community overlapped with a certain epitope with over 80% of their
atoms, a correspondence was established. As epitope 14 is over twice the size of others, its failing
threshold was set to 30%. No community can be mapped with epitopes at larger scales, because
smaller communities will merge into large functional domains, indicating global dynamics. Epitopes
8 and 14 last much longer than the others, whereas epitopes 2, 11 and 13 did not manifest themselves
as single communities. Epitope 8 is an immunodominant epitope, so the persistence of a community
is to some extent related to its allergenicity. Note that epitopes appear and reappear due to either
merging of communities, for example, epitopes 1 and 3 or breaking of communities of an epitope, for
example, epitope 9. As a comparison, there are no linear epitopes identified in OxdC or MnCA.

We compare the Markov Stability analysis results of Ara h 1 and its two controls. As discussed
in the Introduction section, the three proteins are structurally similar and share the two-barrelled
configuration. The two-domain motions are the same when either protein opens and closes around the
virtual dyad axis and in fact appear as the final two community partition at the end of the calculation.



However, the evolution of communities is distinct between the allergen and the other structures,
reflecting the differing functions they need to perform.

Ara h 1 and OxdC have significantly different number of partitionings even at shorter time scales,
indicating different local movements. As time progresses, OxdC formed its C-terminus barrel
community first, followed by the other barrel. Then, the C-terminus barrel was split into two, with a
varying inner boundary for some time period. When the C-terminus barrel was complete again, it
started to merge outside residues, before eventually the two barrels emerged as the two partitions.
A similar process was observed in the MncA case. In contrast, the allergen followed a continuous
merging of communities until the final two barrels formed.

In summary, two distinct community evolution processes appear: the merging—splitting—merging
process is shared by OxdC and MncA, whereas the peanut allergen constantly merges more residues
into bigger communities. These different processes reflect their distinct functions: the allergen, in a
consistently co-operative trend, binds IgE at different timescales, while OxdC maintains itself and
reorganizes its functional domains to catalyze and cleave carbon—carbon bonds. Most of the critical
residues of Ara h 1 are distributed on the outside, so the binding process, generally happening on the
flanking helices and loops, will not affect the barrel on the inside. In contrast, for OxdC, in addition
to its manganese-binding sites positioned in the middle region of each barrel, Just et al. [25] argued
that E162 is a new candidate for the crucial proton donor through substantial conformational change.
Consequently, protein segments need to readjust, reflected by the splitting and reforming barrels,
which may help explain the different community merging process.

We finally show the VI between every mutant of the peanut allergen Ara hl with the wild type
according to the procedure described in the aforementioned Methodology section. Two residues were
picked up as having a significant effect by our procedure, namely E222 and H211. E222 is located
by epitope 5, whereas H211 is within epitope 14, beside the partitioning boundary residue A212 at
medium scales, and not far from E222. As these two residues are directly related to epitopes, it is
both their binding affinity and their conformational dynamics that seem to be altered by the mutation.

4 Conclusion

We studied the major peanut allergen Ara h 1 as well as its structurally similar negative controls
through an atomistic-based graph partitioning methodology, based on Markov Stability, as a viable
approach for unravelling protein dynamics across multiple scales. By partitioning the graphs generated
from the 3D protein conformation, we are able to find meaningful communities at different resolutions
related to scales and functional activities. We identified an intermediate time scale where non-robust
communities are related to epitopes, known regions important for allergenic response. We observed
distinct coupling routes between levels of dynamics from atomic movements up to functional domains,
which may influence the differing functions of IgE-binding activities. Finally, two distal residues had
strong impact on the global dynamics when they were mutated by computational alanisation. The
extent of the mutational effects and the pathways that may link epitopes are subject of future work.

References

[1] Katherine Henzler-Wildman and Dorothee Kern. Dynamic personalities of proteins. Nature,
450(7172):964, 2007.

[2] Martin Karplus and J Andrew McCammon. Molecular dynamics simulations of biomolecules.
Nature Structural & Molecular Biology, 9(9):646, 2002.

[3] Martin Karplus and John Kuriyan. Molecular dynamics and protein function. Proceedings of
the National Academy of Sciences, 102(19):6679-6685, 2005.

[4] John L Klepeis, Kresten Lindorff-Larsen, Ron O Dror, and David E Shaw. Long-timescale
molecular dynamics simulations of protein structure and function. Current opinion in structural
biology, 19(2):120-127, 2009.

[5] Ambuj Kumar and Rituraj Purohit. Use of long term molecular dynamics simulation in
predicting cancer associated snps. PLoS computational biology, 10(4):e1003318, 2014.



(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Danijela Apostolovic, Dragana Stanic-Vucinic, Harmen HJ De Jongh, Govardus AH De Jong,
Jelena Mihailovic, Jelena Radosavljevic, Milica Radibratovic, Julie A Nordlee, Joseph L
Baumert, Milos Milcic, et al. Conformational stability of digestion-resistant peptides of peanut
conglutins reveals the molecular basis of their allergenicity. Scientific reports, 6:29249, 2016.

Philippe Derreumaux and Normand Mousseau. Coarse-grained protein molecular dynamics
simulations. The Journal of chemical physics, 126(2):01B608, 2007.

Sander Pronk, Szilard Pall, Roland Schulz, Per Larsson, Pir Bjelkmar, Rossen Apostolov,
Michael R Shirts, Jeremy C Smith, Peter M Kasson, David Van Der Spoel, et al. Gromacs 4.5:
a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics,
29(7):845-854, 2013.

Sebastian Kmiecik, Dominik Gront, Michal Kolinski, Lukasz Wieteska, Aleksandra Elzbieta
Dawid, and Andrzej Kolinski. Coarse-grained protein models and their applications. Chemical
reviews, 116(14):7898-7936, 2016.

Xiumei Hong, Ke Hao, Christine Ladd-Acosta, Kasper D Hansen, Hui-Ju Tsai, Xin Liu, Xin
Xu, Timothy A Thornton, Deanna Caruso, Corinne A Keet, et al. Genome-wide association
study identifies peanut allergy-specific loci and evidence of epigenetic mediation in us children.
Nature communications, 6:6304, 2015.

James D Astwood, John N Leach, and Roy L Fuchs. Stability of food allergens to digestion in
vitro. Nature biotechnology, 14(10):1269, 1996.

Stef J Koppelman, Sue L Hefle, Steve L Taylor, and Govardus AH De Jong. Digestion of
peanut allergens ara h 1, ara h 2, ara h 3, and ara h 6: A comparative in vitro study and
partial characterization of digestion-resistant peptides. Molecular nutrition & food research,
54(12):1711-1721, 2010.

A Wesley Burks, David Shin, Gael Cockrell, J Steven Stanley, Ricki M Helm, and Gary A
Bannon. Mapping and mutational analysis of the ige-binding epitopes on ara h 1, a legume vicilin

protein and a major allergen in peanut hypersensitivity. European Journal of Biochemistry,
245(2):334-339, 1997.

David S Shin, Cesar M Compadre, Soheila J Maleki, Randall A Kopper, Hugh Sampson, Shau K
Huang, A Wesley Burks, and Gary A Bannon. Biochemical and structural analysis of the ige

binding sites on ara h1, an abundant and highly allergenic peanut protein. Journal of Biological
Chemistry, 273(22):13753-13759, 1998.

Richard Uberto and Ellen W Moomaw. Protein similarity networks reveal relationships among
sequence, structure, and function within the cupin superfamily. PLoS One, 8(9):e74477, 2013.

Ronald E Hileman, Andre Silvanovich, Richard E Goodman, Elena A Rice, Gyula Holleschak,
James D Astwood, and Susan L Hefle. Bioinformatic methods for allergenicity assessment

using a comprehensive allergen database. International archives of allergy and immunology,
128(4):280-291, 2002.

V Brusic, N Petrovsky, SM Gendel, M Millot, O Gigonzac, and SJ Stelman. Computational
tools for the study of allergens. Allergy, 58(11):1083-1092, 2003.

Bingjun Jiang, Hong Qu, Yuanlei Hu, Ting Ni, and Zhongping Lin. Computational analysis
of the relationship between allergenicity and digestibility of allergenic proteins in simulated
gastric fluid. BMC bioinformatics, 8(1):375, 2007.

Scott McClain. Bioinformatic screening and detection of allergen cross-reactive ige-binding
epitopes. Molecular nutrition & food research, 61(8):1600676, 2017.

Peter W Rose, Andreas Prli¢, Ali Altunkaya, Chunxiao Bi, Anthony R Bradley, Cole H Christie,
Luigi Di Costanzo, Jose M Duarte, Shuchismita Dutta, Zukang Feng, et al. The rcsb protein data

bank: integrative view of protein, gene and 3d structural information. Nucleic acids research,
page gkw1000, 2016.



[21] J-C Delvenne, Sophia N Yaliraki, and Mauricio Barahona. Stability of graph communities
across time scales. Proceedings of the national academy of sciences, 107(29):12755-12760,
2010.

[22] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of statistical mechanics: theory and
experiment, 2008(10):P10008, 2008.

[23] Marina Meild. Comparing clusterings by the variation of information. In Learning theory and
kernel machines, pages 173—187. Springer, 2003.

[24] CE Rasmussen and CKI Williams. Gaussian processes for machine learning. the mit press,
cambridge, massachusetts, usa, london, 2006.

[25] Victoria J Just, Clare EM Stevenson, Laura Bowater, Adam Tanner, David M Lawson, and
Stephen Bornemann. A closed conformation of bacillus subtilis oxalate decarboxylase oxdc
provides evidence for the true identity of the active site. Journal of Biological Chemistry,
279(19):19867-19874, 2004.



	Introduction
	Methodology
	Experiments
	Conclusion

