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Abstract

Long after Turing’s seminal Reaction-Diffusion (RD) model, the elegance of
his fundamental equations alleviated much of the skepticism surrounding pattern
formation. Though Turing model is a simplification and an idealization, it is
one of the best-known theoretical models to explain patterns as a reminiscent
of those observed in nature. Over the years, concerted efforts have been made
to align theoretical models to explain patterns in real systems. The apparent
difficulty in identifying the specific dynamics of the RD system makes the problem
particularly challenging. Interestingly, we observe Turing-like patterns in a system
of neurons with adversarial interaction. In this study, we establish the involvement
of Turing instability to create such patterns. By theoretical justification, we present
a pseudo-reaction-diffusion model to explain the mechanism that may underlie
this phenomenon. While supervised learning attains homogeneous equilibrium,
the introduction of an adversary helps break this homogeneity to create non-
homogeneous patterns at equilibrium. In addition, different from sole supervision,
we show that the solutions obtained under adversarial interaction are not limited to
a tiny subspace around initialization.

1 Introduction

In this paper, we intend to demystify an interesting phenomenon: adversarial interaction between
generator and discriminator creates non-homogeneous equilibrium by inducing Turing instability
in a Pseudo-Reaction-Diffusion (PRD) model. This is in contrast to supervised learning where the
identical model finds homogeneous equilibrium while maintaining spatial symmetry over iterations.

The reason for studying this phenomenon is multifold. The fact that adversarial interaction exhibits
Turing-like patterns creates a dire need to investigate its connections to nature. In particular, these
patterns often emerge in real world physical systems, such as butterfly wings, zebra, giraffe and
leopard [1, 2, 3, 4, 5]. Interestingly, adversarial training captures some intricacies of this complex
biological process that create evolutionary patterns in neural networks. Furthermore, it is important
to understand neural synchronization in human brain to design better architectures [6]. This paper is
intended to shed light on some of these aspects.

While dynamical systems governed by different equations exhibit different patterns, it is crucial
to study the dynamics through reaction and diffusion terms that laid the foundation of pattern
formation [1]. Thus we state the key observation:

A system in which a generator and a discriminator adversarially interact with each other exhibits
Turing-like patterns in the hidden layer and top layer of the two layer generator network.

To provide a thorough explanation to these empirical findings, we derive the governing dynamics of a
PRD model.
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From another perspective, the generator provides a short-range positive feedback as it tries to
minimize the empirical risk directly. On the other hand, the discriminator provides a long-range
negative feedback as it tries to maximize the generator cost. Since the adversary discriminates
between real and fake samples, it indirectly optimizes the primary objective function. It is safe to
assume that such signals from the discriminator to the generator form the basis of long-range negative
feedback as studied by Rauch and Millonas [3].

2 Preliminaries

Notations. Bold upper-case letter A denotes a matrix. Bold lower-case letter a denotes a vector.
Normal lower-case letter a denotes a scalar. ‖.‖2 represents Euclidean norm of a vector and spectral
norm of a matrix. ‖.‖F represents Frobenius norm of a matrix. λmin(.) and λmax(.) denotes smallest
and largest eigen value of a matrix. dx represents derivative of x and ∂x represents its partial
derivative. For g : Rd → R, ∇g and ∇2g denote gradient and Laplacian of g, respectively. [m]
denotes the set {1, 2, . . . ,m}:

Problem Setup. Consider that we are given n training samples {(xp,yp)}np=1 ⊂ Rdin × Rdout .
Formally, we denote two layer neural networks with rectified linear unit (ReLU) activation function
(σ(.)) by f (U ,V ,x) = 1√

doutm
V σ (Ux). Here, U ∈ Rm×din and V ∈ Rdout×m. Let us denote

uj = Uj,: and vj = V:,j . The scaling factor 1√
doutm

is derived from Xavier initialization [7]. In
supervised learning, the training is carried out by minimizing the l2 loss over data as given by

Lsup (U ,V ) =
1

2

n∑
p=1

∥∥∥∥ 1√
doutm

V σ (Uxp)− yp

∥∥∥∥2
2

=
1

2

∥∥∥∥ 1√
doutm

V σ (UX)− Y

∥∥∥∥2
F

. (1)

The input data points are represented by X = (x1,x2, . . . ,xn) ∈ Rdin×n and corresponding labels
by Y = (y1,y2, . . . ,yn) ∈ Rdout×n. In regularized adversarial learning, the generator cost is
augmented with an adversary:

Laug (U ,V ,W ,a) =
1

2

∥∥∥∥ 1√
doutm

V σ (UX)− Y

∥∥∥∥2
F︸ ︷︷ ︸

Lsup

− 1

m
√
dout

n∑
p=1

aTσ (WV σ (Uxp))︸ ︷︷ ︸
Ladv

.

(2)

The adversary, g (W ,a, y) = 1√
m
aTσ (Wy) : Rdout → R is a two layer network with ReLU

activation. Here, W ∈ Rm×dout and a ∈ Rm. The discriminator cost is exactly identical to the
critic of WGAN with gradient penalty [8]. We follow the common practice to train generator and
discriminator alternatively using Wasserstein distance. In this study, Laug is considered as the
equivalent of a continuous field in a RD system [1].

Learning Algorithm. We consider the vanilla gradient descent with random initialization as our
learning algorithm to minimize both supervised and augmented objective. For instance, we update
each trainable parameter in augmented objective by the following Ordinary Differential Equations
(ODE):

dujk
dt

= −∂Laug (U(t),V (t),W (t),a(t))

∂ujk(t)
,
dvij
dt

= −∂Laug (U(t),V (t),W (t),a(t))

∂vij(t)
(3)

for i ∈ [dout], j ∈ [m] and k ∈ [din]. In ideal condition, the system enters equilibrium when
dujk
dt =

dvij
dt = 0. To circumvent tractability issues, we seek ε-approximate equilibrium, i.e.

dujk
dt < ε and dvij

dt < ε.

2.1 Revisiting Reaction-Diffusion Model[1]

We focus on two body morphogenesis though it may be applied generally to many bodies upon further
investigation. Here, two bodies refer to two layers of generator network. There are 2m differential
equations governing the reaction (R) and diffusion (D) dynamics of such a complex system:

duj
dt

= Ru
j (uj ,vj) + Du

j

(
∇2uj

)
,
dvj
dt

= Rv
j (uj ,vj) + Dv

j

(
∇2vj

)
, (4)
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where j = 1, 2, . . . ,m. Here, m denotes the total number of neurons in the hidden layer. In the

current setup, uj = (ujk)
din
k=1 , ujk ∈ R and vj = (vij)

dout
i=1 , vij ∈ R. Thus, dujdt =

(
dujk
dt

)din
k=1

and dvj
dt =

(
dvij
dt

)dout
i=1

. In the current analogy, each neuron represents a morphogen as it fulfills the
fundamental requirements of Turing pattern formation. For better understanding, we have grouped
those in hidden layer to one entity (uj) and top layer to another entity (vj). Among several major
advantages of RD systems, a few that are essential to the present body of analysis are separability,
stability and strikingly rich spatio-temporal dynamics. Later parts of this paper will focus on deriving
suitable expressions for the reaction and diffusion term.

2.2 Pseudo-Reaction-Diffusion Model

The analogy that has been made with RD systems in the foregoing analysis may be rather confusing to
some readers. The succeeding analysis is intended to clarify some of these concerns. In the traditional
setting, diffusion terms are limited to the Laplacian of the corresponding morphogens. In the present
account however, the diffusibility of one morphogen depends on the other morphogens, and hence the
term pseudo-reaction-diffusion. Since later discoveries identified the root cause of pattern formation
to be a short range positive feedback and a long range negative feedback [9, 10, 3], a system with
adversarial interaction is asserted to be a pseudo-reaction-diffusion model.

3 Theoretical Analysis

First, we study symmetry and homogeneity in a simplified setup. In this regard, the separability
property allows us to choose a scalar network, i.e., dout = 1 and fix the second layer weights.
There are 2m morphogens in the hidden layer itself making it a critically important analysis from
mathematics perspective. Even with this simplification, the network is still non-convex and non-
smooth. The network architecture then becomes:

f (U ,v,x) =
1√
m

m∑
j=1

vjσ
(
uTj x

)
=

1√
m
vTσ (Ux) . (5)

Our goal is to minimize

Lsup (U ,v) =

n∑
p=1

1

2
(f (U ,v,xp)− yp)2 (6)

in supervised setting and

Laug (U ,v,w,a) =

n∑
p=1

1

2
(f (U ,v,xp)− yp)2 −

1√
m

n∑
p=1

aT σ (w (f (U ,v,xp))) (7)

in adversarial setting. The architecture of adversary is simplified to g (w, a, y) =
1√
m

∑m
j=1 ajσ (wjy). We follow the definition of Gram matrix from [11]

Definition 1. Define Gram matrix H∞ ∈ Rn×n. Each entry of H∞ is computed by H∞ij =

Eu∼N (0,I)

[
xTi xj1{uT xi≥0,uT xj≥0}

]
.

Let us recall the following assumption which is crucial for the analysis in this paper.

Assumption 1. We assume λ0 , λmin (H∞) > 0 which means thatH∞ is a positive definite matrix.

The Gram matrix has several important properties [12, 13]. One interesting property that justifies
Assumption 1 is given by Du et al. [11]: If no two inputs are parallel, then the Gram matrix is
positive definite. This is a valid assumption as very often we do not rely on a training dataset that
contains too many parallel samples.

3.1 Warm-Up: Reaction Without Diffusion

Before stating the main result, it is useful to get familiarized with the arguments of warm-up exercise.
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Theorem 1. (Symmetry and Homogeneity) Suppose Assumption 1 holds. Let us i.i.d. initialize
uj ∼ N (0, I) and sample vj uniformly from {+1,−1} for all j ∈ [m]. If we choose ‖xp‖2 = 1 for
p ∈ [n], then we obtain the following with probability at least 1− δ:

‖uj(t)− uj(0)‖2 ≤ O
(

n3/2

m1/2λ0δ

)
, ‖U(t)−U(0)‖F ≤ O

(
n3/2

λ0δ

)
.

Proof. Refer to Appendix B.1.

3.2 Main Result: Reaction With Diffusion

To limit the capacity of a discriminator, it is often suggested to enforce a Lipschitz constraint on its
parameters. While gradient clipping has been quite effective in this regard [14], recent success in
adversarial training owes in part to gradient penealty [8]. We remark that min-max optimization under
non-convexity and non-concavity is considered NP-hard to find a stationary point [15]. Therefore, it is
necessary to make certain assumptions about discriminator, such as Lipschitz constraint, regularization
and structure of the network. Different from one layer generator and quadratic discriminator [15], we
study two layer networks with ReLU activations and rely on gradient penalty to limit its capacity. In
the simplified theoretical analysis, we assume ‖w‖2 ≤ L for a small positive constant L > 0.

Theorem 2. (Breakdown of Symmetry and Homogeneity) Suppose Assumption 1 holds. Let us
i.i.d. initialize uj , wr ∼ N (0, I) and sample vj , ar uniformly from {+1,−1} for j, r ∈ [m]. Let

‖xp‖2 = 1 for all p ∈ [n]. If we choose L ≤ O
(

ε
√
m

κn
√

2 log(2/δ)

)
, κ = O(κ∞) where κ∞denotes

the condition number ofH∞, and define µ , Ln
√

2 log(2/δ)√
m

, then with probability at least 1− δ, we
obtain the following1:

‖uj(t)− uj(0)‖2 ≤ O
(

n3/2√
mλ0δ

+

(
µ (1 + κ

√
n)√

m

)
t

)
, ‖U(t)−U(0)‖F ≤ O

(
n3/2

λ0δ
+ µ

(
1 + κ

√
n
)
t

)
.

Proof. Refer to Appendix B.2.

4 Discussion of Insights from Analysis

A profound implication of this finding is that adversarial learning allows gradient descent-ascent to
explore a large subspace in contrast to supervised learning where a tiny subspace around initialization
is merely explored [16]. As a result, it offers the provision to exploit full capacity of network
architectures by encouraging local interaction. In other words, the neurons in supervised learning do
not interact with each other as much as they do in adversarial learning. By introducing the diffusible
factors, it helps break the spatial symmetry and homogeneity in this tiny subspace. Due to more
local interaction and diffusion, it exhibits patterns as a reminiscent of those observed in nature. More
importantly, this is consistent with the well-studied theory of pattern formation [1, 2, 17, 3].

The system of neurons is initially in a stable homogeneous condition due to non-diffusive elements in
sole supervision. It is perturbed by irregularities introduced under the influence of an adversary. For
a RD system, it is necessary that these irregularities are small enough, which otherwise would desta-
bilize the whole system, and it may never converge to a reasonable solution. This is easily satisfied
in over-parameterized networks as per the statement of Theorem 2. Thus, it is not unreasonable to
suppose that adversarial interaction in augmented objective is the only one in which conditions are
such to break the spatial symmetry. Different from strict RD systems, the diffusibility here does not
directly depend on Laplacian of each morphogen. This is not uncommon because bell-like pattern
formation in the skin of a zebrafish is a typical example where patterns emerge even when the system
is different from the original Turing model [4]. More importantly, it fits the description of a short and
a long range feedback which indicates a similar mechanism must be involved in adversarial learning.
This analogy essentially provides positive support to the developed PRD theory.

1Refer to Appendix for further discussion on breakdown of symmetry and homogeneity.
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5 Broader Impact

This paper investigates the underlying phenomena that may cause evolutionary patterns to emerge
with the advent of adversarial interaction. By theoretical and empirical evidence, it tries to corroborate
the developed pseudo-reaction-diffusion system. We believe this work does not present any forseeable
societal consequence.
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Appendix A Jointly Training Both Layers

In this section, we extend theoretical analyses from a single layer scalar network architecture to
jointly training both layers with multiple classes. For simplicity, let zp denotes 1√

doutm
V σ (Uxp).

Definition 2. Let us define Ru
j (uj ,vj) and Rv

j (uj ,vj) as the reaction terms in hidden and top
layer, respectively. Also, let Du

j

(
∇2uj

)
and Dv

j

(
∇2vj

)
denote the diffusion terms in hidden and

top layer, respectively.

Theorem 3. (Reaction-Diffusion Dynamics) If we absorb constants in O(.) and set
(yp − zp)i vij1{uTj xp≥0}xp,k = O (1) for i ∈ [dout] and p ∈ [n], then for all j ∈ [m] the RD
dynamics satisfy:

Ru
j (uj ,vj) = O

(
ndin

√
dout
m

)
,

Du
j

(
∇2uj

)
= O

(
nm2dind

3/2
out

)
,

Rv
j (uj ,vj) = O

(
ndin

√
dout
m

)
,

Dv
j

(
∇2vj

)
= O

(
nm2dind

1/2
out

)
.

Proof. See next section. The diffusion terms are greatly affected by other morphogens in the system,
suggesting a special case scenario of Turing’s RD model. To put more succinctly, Du

j and Dv
j are

dominated by vj and uj , respectively. While the asymptotic reaction terms are bounded by similar
norms, the apparent difference between diffusion terms explains why we observe different patterns in
the hidden and top layer.

Appendix B Technical Proofs

B.1 Proof of Theorem 1

We begin proof sketch with the following lemma.

Lemma 1. If we i.i.d initialize ujk ∼ N (0, 1) for j ∈ [m] and k ∈ [din], then with probability at
least (1 − δ), ujk induces a symmetric and homogeneously distributed matrix U at initialization
within a ball of radius ζ , 2

√
mdin√
2πδ

.

Using law of large numbers, it is trivial to prove symmetry and homogeneity since Gaussian distribu-
tion has a symmetric density function. Now, we derive the upper bound.

With probability at least (1− δ), by Markov’s inequality, we get

|ujk (0)| ≤ E [|ujk (0)|]
δ

=
2√
2πδ

. (8)

We use matrix norm properties to bound the Frobenius norm of U(0):

‖U(0)‖F =

 m∑
j=1

din∑
k=1

|ujk(0)|2
1/2

≤

 m∑
j=1

din∑
k=1

4

2πδ2

1/2

≤ 2
√
mdin√
2πδ

, ζ.

(9)

This finishes the proof of Lemma 1. �
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Next, we prove how supervised cost helps maintain symmetry and homogeneity. Since U is initially
symmetric and homogeneously distributed within ζ, the problem is now reduced to show that U(t)
lies in the close proximity of U(0). We remark three crucial observations from [11] that are essential
to our analysis.

Remark 1. Suppose ‖uj − uj(0)‖2 ≤
cδλ0

n2 , R for some small positive constant c. In the current
setup, the Gram matrixH ∈ Rn×n defined by

Hij = xTi xj
1

m

m∑
r=1

1{uTr xi≥0,uTr xj≥0}

satisfies ‖H −H(0)‖2 ≤
λ0

4 and λmin (H) ≥ λ0

2 .

Remark 2. With Gram matrixH(t), the prediction dynamics, z(t) = f (U(t),v(t),x) are governed
by the following ODE:

dz(t)

dt
= H(t) (y − z(t)) .

Remark 3. For λmin (H(t)) ≥ λ0

2 , we have

‖z(t)− y‖2 ≤ exp

(
−λ0

2
t

)
‖z(0)− y‖2 .

Now, for 0 ≤ s ≤ t,∥∥∥∥duj(s)ds

∥∥∥∥
2

=

∥∥∥∥∂Lsup (U ,v)

∂uj(s)

∥∥∥∥
2

=

∥∥∥∥∥
n∑
p=1

(zp(s)− yp)
∂zp(s)

∂uj(s)

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
p=1

(zp(s)− yp)
1√
m
vj1{uj(s)Txp≥0}xp

∥∥∥∥∥
2

.

(10)

By triangle inequality,∥∥∥∥duj(s)ds

∥∥∥∥
2

≤
n∑
p=1

∥∥∥∥(zp(s)− yp)
1√
m
vj1{uj(s)T xp≥0}xp

∥∥∥∥
2

. (11)

Using the classical inequality of Cauchy-Schwarz, ‖xp‖2 = 1, |vj | = 1 and Remark 3, we get∥∥∥∥duj(s)ds

∥∥∥∥
2

≤
n∑
p=1

1√
m
|(zp(s)− yp)| |vj | ‖xp‖2

=
1√
m

n∑
p=1

|(zp(s)− yp)|

≤
√
n√
m
‖z(s)− y‖2

≤
√
n√
m

exp

(
−λ0

2
s

)
‖z(0)− y‖2 .

(12)

By integral form of Jensen’s inequality, the distance from initialization can be bounded by

‖uj(t)− uj(0)‖2 =

∥∥∥∥∫ t

0

duj(s)

ds
ds

∥∥∥∥
2

≤
∫ t

0

∥∥∥∥duj(s)ds

∥∥∥∥
2

ds

≤
√
n√
m

∫ t

0

exp

(
−λ0

2
s

)
‖z(0)− y‖2 ds

≤
2
√
n ‖z(0)− y‖2√

mλ0

(
1− exp

(
−λ0

2
t

))
.

(13)
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Since exp
(
−λ0

2 t
)

is a decreasing function of t, the above expression simplifies to

‖uj(t)− uj(0)‖2 ≤
2
√
n ‖z(0)− y‖2√

mλ0
. (14)

Using Markov’s inequality, with probability at least 1− δ, we get

‖uj(t)− uj(0)‖2 ≤
2
√
nE [‖z(0)− y‖2]√

mλ0δ
≤ O

(
n3/2

m1/2λ0δ

)
. (15)

Now, we can bound the distance from initialization.

‖U(t)−U(0)‖F =

 m∑
j=1

din∑
k=1

|ujk(t)− ujk(0)|2
1/2

≤

 m∑
j=1

‖uj(t)− uj(0)‖22

1/2

≤

 m∑
j=1

4n (E [‖z(0)− y‖2])
2

mλ20δ
2

1/2

≤
2
√
nE [‖z(0)− y‖2]

λ0δ
≤ O

(
n3/2

λ0δ

)
,

(16)

which finishes the proof. �

B.2 Proof of Theorem 2

We sketch the proof of the main result in two parts: Reaction Term and Diffusion Term.

B.2.1 Reaction Term

For 0 ≤ s ≤ t in augmented objective as given by equation (7), we get∥∥∥∥duj(s)ds

∥∥∥∥
2

=

∥∥∥∥∂Laug (U ,v,w,a)

∂uj(s)

∥∥∥∥
2

=

∥∥∥∥∥∂Lsup (U ,v)

∂uj(s)
− ∂

∂uj(s)

n∑
p=1

g (w, a, zp)

∥∥∥∥∥
2

≤
∥∥∥∥∂Lsup (U ,v)

∂uj(s)

∥∥∥∥
2

+

∥∥∥∥∥ ∂

∂uj(s)

n∑
p=1

g (w, a, zp)

∥∥∥∥∥
2︸ ︷︷ ︸

Triangle inequality

.

(17)

We start our analysis by first deriving an asymptotic upper bound of the supervised part. Then, we
shift our focus to the augmented part which essentially constitutes the adversary.

Lemma 2. In contrast to Remark 2, the prediction dynamics in adversarial regularization are
governed by the following ODE:

dz(t)

dt
= H(t) (y − z(t)) +H(t)∇z(t)g(w(t),a(t), z(t)). (18)
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Proof. The above ODE is obtained by analyzing the dynamics as following:

dzp(t)

dt
=

m∑
j=1

〈
∂f (U ,v,xp)

∂uj(t)
,
duj(t)

dt

〉

=
m∑
j=1

〈
∂f (U ,v,xp)

∂uj(t)
,

1√
m

n∑
q=1

(yq − zq) vjxq1{uTj xq≥0} +
1

m

n∑
q=1

m∑
r=1

arwrvjxq1{wrzq≥0,uTj xq≥0}

〉

=
m∑
j=1

〈
∂f (U ,v,xp)

∂uj(t)
,

1√
m

n∑
q=1

(yq − zq) vjxq1{uTj xq≥0}

〉
︸ ︷︷ ︸

A

+
m∑
j=1

〈
∂f (U ,v,xp)

∂uj(t)
,

1

m

n∑
q=1

m∑
r=1

arwrvjxq1{wrzq≥0,uTj xq≥0}

〉
︸ ︷︷ ︸

B

.

(19)

Following arguments of the warm-up exercise, the first part can be simplified as:

A :=

m∑
j=1

〈
1√
m
vjxp1{uTj xp≥0},

1√
m

n∑
q=1

(yq − zq) vjxq1{uTj xq≥0}

〉

=

n∑
q=1

(yq − zq) v2jxTp xq
1

m

m∑
j=1

1{uTj xp≥0,uTj xq≥0}

,
n∑
q=1

(yq − zq(t))Hpq(t),

(20)

whereHpq(t) denotes the elements of Gram matrixH(t) defined by

Hpq(t) = xTp xq
1

m

m∑
j=1

1{uTj xp≥0,uTj xq≥0}. (21)

Using the predefined Gram matrix, the second part can be simplified as:

B :=

m∑
j=1

〈
1√
m
vjxp1{uTj xp≥0},

1

m

n∑
q=1

m∑
r=1

arwrvjxq1{wrzq≥0,uTj xq≥0}

〉

=

n∑
q=1

v2j

(
1√
m

m∑
r=1

arwr1{wrzq≥0}

)
︸ ︷︷ ︸

∇zg

xTp xq
1

m

m∑
j=1

1{uTj xp≥0,uTj xq≥0}

,
n∑
q=1

∂g (w,a, zq)

∂zq
Hpq(t)

(22)

Thus, the prediction dynamics are governed by

dzp(t)

dt
=

n∑
q=1

(yq − zq(t))Hpq(t) +

n∑
q=1

∂g (w(t),a(t), zq(t))

∂zq(t)
Hpq(t). (23)

Rearranging the above expression in matrix form, we get the statement of Lemma 2. �

Lemma 3. (Hoeffding’s inequality, two sided [18]) Suppose a = (a1, a2, . . . , am) ∈ {±1}m be a
collection of independent symmetric Bernoulli random variables, and w = (w1, w2, . . . , wm) ∈ Rm.
Then, for any t > 0, we have

P

{∣∣∣∣∣
m∑
r=1

arwr

∣∣∣∣∣ ≥ t
}
≤ 2 exp

(
− t2

2 ‖w‖22

)
. (24)
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With probability at least 1− δ, we get the following bound using two-sided Hoeffding’s inequality:∣∣∣∣∣
m∑
r=1

arwr

∣∣∣∣∣ ≤ ‖w‖2
√

2 log

(
2

δ

)
. (25)

Now, the distance from true labels can be bounded by

d

dt
‖z(t)− y‖22 =

〈
z(t)− y,

dz(t)

dt

〉
= 2

〈
z(t)− y,H(t) (y − z(t)) +H(t)∇z(t)g(w(t),a(t), z(t))

〉
= 2 〈z(t)− y,−H(t) (z(t)− y)〉+ 2

〈
z(t)− y,H(t)∇z(t)g(w(t),a(t), z(t))

〉
(26)

Lemma 4. Suppose Assumption 1 holds. If we denote λmax (H∞) by λ∞1 , then λmax (H) ≤ λ1

2 ,
λ∞1 + λ0

2 .

Proof. For clarity, let us recall Lemma 3.1 of Du et al.[11]: If m = Ω
{
n2

λ2
0

log
(
n
δ

)}
, then we have

with high probability 1− δ, ‖H(0)−H∞‖2 ≤
λ0

4 and λmin (H(0)) ≥ 3
4λ0. From Remark 1, we

know

‖H‖2 − ‖H(0)‖2 ≤ ‖H −H(0)‖2 ≤
λ0
4
. (27)

Using similar arguments, we get

‖H(0)‖2 − ‖H
∞‖2 ≤ ‖H(0)−H∞‖2 ≤

λ0
4
, (28)

which implies λmax(H(0)) ≤ λmax(H∞) + λ0

4 . By plugging this, the expression gets simplified to

λmax (H) ≤ λmax (H∞) +
λ0
4

+
λ0
4

≤ λ∞1 +
λ0
2
,
λ1
2
.

(29)

This justifies the upper bound assumption of the largest eigen value over iterations. �

Since λmin(H) ≥ λ0

2 (Remark 1) and λmax(H) ≤ λ1

2 (Lemma 4), we get

d

dt
‖z(t)− y‖22 ≤ −λ0 ‖z(t)− y‖22 + λ1

〈
z(t)− y,∇z(t)g(w(t),a(t), z(t))

〉
≤ −λ0 ‖z(t)− y‖22 + λ1‖z(t)− y‖2

∥∥∇z(t)g(w(t),a(t), z(t))
∥∥
2︸ ︷︷ ︸

Cauchy-Schwarz inequality

≤ −λ0 ‖z(t)− y‖22 + λ1 ‖z(t)− y‖2
∥∥∇z(t)g(w(t),a(t), z(t))

∥∥
1

≤ −λ0 ‖z(t)− y‖22 λ1 ‖z(t)− y‖2
n∑
q=1

∣∣∣∣∣ 1√
m

m∑
r=1

arwr1{wrzq≥0}

∣∣∣∣∣
≤ −λ0 ‖z(t)− y‖22 λ1 ‖z(t)− y‖2

n√
m

∣∣∣∣∣
m∑
r=1

arwr

∣∣∣∣∣

(30)

Substituting equation (25) in equation (30), we get

d

dt
‖z(t)− y‖22 ≤ −λ0 ‖z(t)− y‖22 + λ1 ‖z(t)− y‖2

n√
m
‖w‖2

√
2 log

(
2

δ

)

≤ −λ0 ‖z(t)− y‖22 +
λ1Ln

√
2 log

(
2
δ

)
√
m

‖z(t)− y‖2 .

(31)

11



Let us define µ ,
Ln

√
2 log( 2

δ )√
m

. Then,

d

dt
‖z(t)− y‖22 ≤ −λ0 ‖z(t)− y‖22 + λ1µ ‖z(t)− y‖2 (32)

The above non-linear ODE is a special Bernoulli Differential Equation (BDE)2 which has known
exact solutions [19]. For simplicity, let us suppose ψ = ‖z(t)− y‖22. Now,

dψ

dt
≤ −λ0ψ + λ1µψ

1/2 (33)

Substituting ψ = ϕ2, the BDE is reduced to an Initial Value Problem (IVP): dϕdt + λ0

2 ϕ ≤
λ1

2 µ. By
substituting ϕ = νζ, the IVP is decomposed into two linear ODEs of the form dν

dt + λ0

2 ν = 0 and
ν dζdt −

λ1

2 µ = 0. Since these ODEs have separable forms, for arbitrary constants C1 and C2, we get

ν = C1 exp

(
−λ0t

2

)
, ζ = C2 +

κµ

C1
exp

(
λ0t

2

)
, (34)

where κ = λ1

λ0
=

2(λ∞
1 +

λ0
2 )

λ0
= O(κ∞). Here, κ∞ is the condition number of H∞. Thus, the

solution of the BDE is given by ψ = ϕ2 =
(
C exp

(
−λ0t

2

)
+ κµ

)2
for another constant C. Using

initial value of ψ, we get the exact solution:

‖z(t)− y‖2 ≤ (‖z(0)− y‖2 − κµ) exp

(
−λ0

2
t

)
+ κµ. (35)

From equation (12) in the warm-up exercise, we know for 0 ≤ s ≤ t,∥∥∥∥∂Lsup (U ,v)

∂uj(s)

∥∥∥∥
2

≤
√
n√
m
‖z(s)− y‖2 . (36)

Now, substituting equation (35), we get∥∥∥∥∂Lsup (U ,v)

∂uj(s)

∥∥∥∥
2

≤
√
n√
m

(‖z(0)− y‖2 − κµ) exp

(
−λ0

2
s

)
+

√
n√
m
κµ.

(37)

Therefore, the reaction dynamics are governed by

Ru
j (uj(t)) ≤

√
n√
m

(‖z(0)− y‖2 − κµ) exp

(
−λ0

2
t

)
+

√
n√
m
κµ. (38)

B.2.2 Diffusion Term

The augmented part on the other hand becomes:∥∥∥∥∥ ∂

∂uj(s)

n∑
p=1

g (w, a, zp)

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
p=1

m∑
r=1

1√
m
ar1{wrzp≥0}wr

1√
m
vj1{vTj xp≥0}xp

∥∥∥∥∥
2

.

(39)

By Triangle and Cauchy-Schwarz inequality, we get∥∥∥∥∥ ∂

∂uj(s)

n∑
p=1

g (w, a, zp)

∥∥∥∥∥
2

≤ 1

m

n∑
p=1

∥∥∥∥∥vj1{vTj xp≥0}xp
m∑
r=1

arwr1{wrzp≥0}

∥∥∥∥∥
2

≤ 1

m

n∑
p=1

|vj | ‖xp‖2

∣∣∣∣∣
m∑
r=1

arwr

∣∣∣∣∣
≤ 1

m

n∑
p=1

∣∣∣∣∣
m∑
r=1

arwr

∣∣∣∣∣
(40)

2A Bernoulli differential equation is an ODE of the form dx(t)
dt

+P (t)x(t) = Q(t)xn(t) for n ∈ R\ {0, 1} .
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Substituting equation (25) in equation (40), we arrive at the following inequality:∥∥∥∥∥ ∂

∂uj(s)

n∑
p=1

g (w, a, zp)

∥∥∥∥∥
2

≤ 1

m

n∑
p=1

‖w‖2

√
2 log

(
2

δ

)

≤
Ln
√

2 log
(
2
δ

)
m

= O
(

µ√
m

)
.

(41)

Thus, the diffusion dynamics are given by

Du
j (uj(t)) ≤

Ln
√

2 log
(
2
δ

)
m

.
(42)

Now integrating the gradients over 0 ≤ s ≤ t,

‖uj(t)− uj(0)‖2 ≤
∫ t

0

∥∥∥∥duj(s)ds

∥∥∥∥
2

ds

≤
∫ t

0

√
n√
m

(‖z(0)− y‖2 − κµ) exp

(
−λ0

2
s

)
ds+

∫ t

0

µ (1 + κ
√
n)√

m
ds

≤
2
√
n (‖z(0)− y‖2 − κµ)√

mλ0

(
1− exp

(
−λ0

2
t

))
+

(
µ (1 + κ

√
n)√

m

)
t.

(43)

Using Markov’s inequality, ‖z(0)− y‖2 ≤
E[‖z(0)−y‖2]

δ = O
(
n
δ

)
with probability at least 1 − δ.

Thus,

‖uj(t)− uj(0)‖2 ≤ O
(

n3/2

m1/2λ0δ
+

(
µ (1 + κ

√
n)

m1/2

)
t

)
. (44)

Furthermore, the spatial grid of neurons satisfies:

‖U(t)−U(0)‖F ≤
√
m ‖uj(t)− uj(0)‖2

≤ O
(
n3/2

λ0δ
+ µ

(
1 + κ

√
n
)
t

)
.

(45)

To circumvent tractability issues, it is common to seek an ε-stationary point. As given by equation (35),
z(t) in adversarial learning converges uniformly to an ε-neighborhood of y for any t ≥ T0 ,
2
λ0

log
(
‖z(0)−y‖2−κµ

ε−κµ

)
. For finite time convergence, we need κµ < ε < ‖z(0)− y‖2. The

second inequality holds because we usually look for a solution where the error is better than what
obtained during initialization. The first inequality gives the upper bound on gradient penalty, i.e.,

L ≤ O
(

ε
√
m

κn
√

2 log(2/δ)

)
by substituting the value of µ. It is an important result in a sense that over-

parameterized networks can still enjoy linear rate of convergence even under adversarial interaction.

In a general configuration, Remark 1 asserts that the induced Gram matrix is stable and satisfies our
assumptions on eigen values as long as ‖uj − uj(0)‖ ≤ R. Intuitively, this is satisfied when the
points visited by gradient descent in adversarial learning lie within this R-ball. Formally, we need the
following condition to be satisfied for finding the least expensive ε-stationary point:

O
(

n3/2

m1/2λ0δ
+

(
µ (1 + κ

√
n)

m1/2

)
T0

)
≤ R. (46)

Substituting R = cδλ0

n2 in the above expression, we get

m = Ω

((
n7/2

λ20δ
2

+
n2µ (1 + κ

√
n)T0

λ0δ

)2
)
. (47)

It is worth mentioning that the polynomial node complexity, m = poly
(
n, 1

λ0
, 1δ

)
is also essential

for finding an ε-stationary point in sole supervision. By ignoring the diffusible factors, i.e., setting
µ = 0, we recover the lower bound, m = Ω

(
n7

λ4
0δ

4

)
in supervised learning. �
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B.3 Proof of Theorem 3

Our first step is to derive dynamics of weights due to supervised cost. In the hidden layer, the weights
are updated by the following PDE.

∂Lsup (U ,V )

∂ujk
=

1

2

n∑
p=1

∂

∂ujk

dout∑
i=1

(zp − yp)
2
i

=

n∑
p=1

dout∑
i=1

(zp − yp)i
∂zp,i
∂ujk

=

n∑
p=1

dout∑
i=1

(zp − yp)i
1√
doutm

vij
∂

∂ujk
σ
(
uTj xp

)
=

1√
doutm

n∑
p=1

dout∑
i=1

(zp − yp)i vij1{uTj xp≥0}xp,k.

(48)

Next, we calculate dynamics of weights in the top layer.

∂Lsup (U ,V )

∂vij
=

1

2

n∑
p=1

∂

∂vij

dout∑
i=1

(zp − yp)
2
i

=

n∑
p=1

(zp − yp)i
∂zp,i
∂vij

=

n∑
p=1

(zp − yp)i
1√
doutm

∂

∂vij

m∑
j=1

vijσ
(
uTj xp

)
=

1√
doutm

n∑
p=1

(zp − yp)i 1{uTj xp≥0}u
T
j xp.

(49)

Now, we proceed to compute dynamics of weights due to adversarial regularization. In the hidden
layer, the weights obey the following dynamics:

∂Ladv (U ,V ,W ,a)

∂ujk
=

1

m
√
dout

n∑
p=1

aT diag
(
1{WV σ(Uxp)≥0}

)
Wvj1{uTj xp≥0}xp,k. (50)

The weights in the top layer are governed by:

∂Ladv (U ,V ,W ,a)

∂vij
=

1

m
√
dout

n∑
p=1

aT diag
(
1{WV σ(Uxp)≥0}

)
W:,i1{uTj xp≥0}u

T
j xp. (51)

Analogous to equation (4), the reaction and diffusion terms in augmented objective are defined as:

Ru
j (uj ,vj) ,

{
1√
doutm

n∑
p=1

dout∑
i=1

(yp − zp)i vij1{uTj xp≥0}xp,k

}din
k=1

, (52)

Du
j

(
∇2uj

)
,

{
1

m
√
dout

n∑
p=1

aT diag
(
1{WV σ(Uxp)≥0}

)
Wvj1{uTj xp≥0}xp,k

}din
k=1

, (53)

Rv
j (uj ,vj) ,

{
1√
doutm

n∑
p=1

(yp − zp)i 1{uTj xp≥0}u
T
j xp

}dout
i=1

, (54)
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Dv
j

(
∇2vj

)
,

{
1

m
√
dout

n∑
p=1

aT diag
(
1{WV σ(Uxp)≥0}

)
W:,i1{uTj xp≥0}u

T
j xp

}dout
i=1

. (55)

Ignoring constants and assuming (yp − zp)i vij1{uTj xp≥0}xp,k = O (1), we get asymptotic bounds

on the norm of reaction and diffusion terms3:

Ru
j (uj ,vj) = O

(
ndin

√
dout
m

)
,

Du
j

(
∇2uj

)
= O

(
nm2dind

3/2
out

)
,

Rv
j (uj ,vj) = O

(
ndin

√
dout
m

)
,

Dv
j

(
∇2vj

)
= O

(
nm2dind

1/2
out

)
,

(56)

which completes the proof. �

Appendix C More Related Works

C.1 Reaction-Diffusion Systems

The original RD model is a simplification and an idealization of practical systems whose complexity
makes it hard to understand the phenomena. With slight modification to the theory, one may easily
extend this mathematical analysis to explain pattern formation in real world systems. In addition, it
can generate limitless variety of patterns depending on the parameters of reaction and diffusion terms.

Numerous methods seek to explain pattern formation in complex systems. Among many reasonable
attempts, one that experimental biologists may recall is gradient model [20]. Different from RD
model, it assumes a fixed source of morphogens that provides positional information. In other words,
it can be designed as a special case of RD model by carefully choosing the boundary conditions.
Experiments have shown the necessity of molecular interaction and boundary condition to create
more realistic patterns [2]. To model interactions of molecular elements in gradient analysis, Gregor
et al.[21] developed a framework that is essentially similar to RD model.

Concerted efforts have been made towards extension and identification of root causes to explain
pattern formation. The fact that a short range positive feedback and a long range negative feedback are
enough to generate Turing patterns is indeed a big revelation in this direction [9, 10]. This refinement
helps envision a wide variety of patterns in more complex systems.

Particularly intriguing is the fact that these interacting elements need not be limited to molecules.
The interaction between cellular signals also generates Turing patterns [4]. Further, there is no
restriction on how the system diffuses to break spatial symmetry. A relayed series of cell to cell
signal transmission may induce diffusible factors in a system [3]. All these scenarios have a common
ground in a sense that these systems exhibit a short range positive feedback and a long range negative
feedback similar to adversarial framework.

C.2 Adversarial Learning

Recent success of Generative Adversarial Networks (GANs) [22, 14] has led to exciting applications
in a wide variety of tasks [23, 24, 25, 26, 27]. In adversarial learning paradigm, it is often required
that a particular sample is generated subject to a conditional input. Typically, conditional GANs
are employed to meet these demands [28]. Further, it has been reported in copious literature that
supervised learning with adversarial regularization performs better than sole supervision [25, 29,

3More precisely, one may choose a generator to have different number of hidden units than discriminator. In
that case, the asymptotic bounds may contain mdis and mgen. To simplify the expression and focus more on
analysis, we assume equal number of hidden units in generator and discriminator.
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30, 31, 32, 33]. In all these prior works, one may notice several crucial properties of adversarial
interaction. It is worth emphasizing that adversarial learning owes its benefits to the continuously
evolving loss function which otherwise is extremely difficult to model. Motivated by these findings,
we uncover another interesting property of adversarial training. We observe that adversarial interaction
helps break the symmetry and homogeneity to create non-homogeneous patterns in weight space.

C.3 Bernoulli Differential Equation

Bernoulli differential equation was discussed in 1695 [19]. This fundamental equation arises naturally
in a wide variety fields, such as modelling of population growth [34], modelling of a pandemic,
modelling of growth of tumors, Fermi-Dirac statistics, modelling of crop response, and modelling
of diffusion of innovations in economics and sociology [35]. In Verhulst model [34] of popula-
tion growth, the rate of reproduction is proportional to current population and available resources.
Formally,

dP

dt
= rP

(
1− P

K

)
, (57)

where P, r, and K denote population size, rate of growth, and carrying capacity, respectively. In
ecology, N is often used in place of P to represent population. An interesting theory, namely r/K
selection theory builds on simplified Verhulst model [34] by drawing r and K from ecological
algebra. In the similar spirit, the presented PRD model arrives at a special Bernoulli differential
equation where error being the population size in the modelling of population growth. Different from
traditional settings, the rate of change here is proportional to the square root of current error. To put
more succinctly,

dψ

dt
≤ rψ1/2

(
1− ψ1/2

K

)
, (58)

where r = λ1µ and K = κµ. The interpretation of this equation is reversed in the present analysis as
we are interested in the decay of total error. Nevertheless, the compact representation captures the
essence of reaction and diffusion dynamics.

Appendix D Further Discussion of Insights from Analysis

It is well known that randomly initialized gradient descent with over-parameterization finds solutions
close to its initialization [11, 36, 37, 38]. The distance from initialization has helped unveil several
mysteries of deep learning in part including the generalization puzzle and ε-stationarity. We ask
whether such implicit restriction to a tiny search space is a necessary condition to achieve similar
performance. The expressive power of a large network is not fully exploited by limiting the search
space. This argument is supported by Gulrajani et al. [8] who show that the generator in WGAN
with weight clipping [14] fails to capture higher order moments. One reason for such behavior is
the implicit restriction of discriminator weights to a tiny subspace around extremas due to weight
clipping. It is resolved however by incorporating gradient penalty which allows exploration in a
larger search space within clipping boundaries. In this regard, we provide both theoretical and
empirical evidence that such implicit restriction to a tiny subspace is not a necessary condition. With
over-parameterization, randomly initialized gradient descent-ascent can still find a global minimizer
relatively farther from its initialization. It is possible because of adversarial interaction that helps
introduce diffusible factors into the system.

While this work takes a step towards explaining non-homogeneous pattern formation due to adversarial
interaction, it is far from being conclusive. Though diffusibility ensures more local interaction, it will
certainly be interesting to synchronize neurons based on this observation in future.
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