
Bayesian parameter estimation using conditional
variational autoencoders for gravitational-wave

astronomy

Hunter Gabbard, Chris Messenger, Ik Siong Heng
SUPA, School of Physics and Astronomy

University of Glasgow
Glasgow, UK G12 8QQ

h.gabbard.1@research.gla.ac.uk

Francesco Tonolini, Roderick Murray-Smith
School of Computing Science

University of Glasgow
Glasgow, UK G12 8QQ

Abstract

Gravitational wave (GW) detection is now commonplace [3, 4] and as the sensitivity
of the global network of GW detectors improves, we will observe O(100)s of
transient GW events per year [5]. The current methods used to estimate their
source parameters employ optimally sensitive [18] but computationally costly
Bayesian inference approaches [25] where typical analyses have taken between
6 hours and 5 days [2]. For binary neutron star (BNS) and neutron star black
hole (NSBH) systems prompt counterpart electromagnetic (EM) signatures are
expected on timescales of 1 second – 1 minute and the current fastest method
for alerting EM follow-up observers [19], can provide estimates in O(1) minute,
on a limited range of key source parameters. Here we show that a conditional
variational autoencoder (CVAE) [23, 17] pre-trained on binary black hole (BBH)
signals can return Bayesian posterior probability estimates. The training procedure
need only be performed once for a given prior parameter space and the resulting
trained machine can then generate samples describing the posterior distribution
∼ 6 orders of magnitude faster than existing techniques.

1 Introduction

The problem of detecting GWs has largely been solved through the use of template based matched-
filtering, a process recently replicated using machine learning techniques [12, 10, 11]. Once a GW
has been identified through this process, Bayesian inference, known to be the optimal approach [18],
is used to extract information about the source parameters of the detected GW signal. Although
optimal, Bayesian inference is computationally costly. Extracting parameters such as the sky position
in a timely manner is key to maximising the amount of lead time given to other EM partners in order
to direct their telescopes to the optimal location in the sky with little loss in observational fidelity. In
the standard Bayesian GW inference approach, we assume a signal and noise model and both may
have unknown parameters that we are either interested in inferring or prefer to marginalise away.
Each parameter is given a prior astrophysically motivated probability distribution and in the GW
case, we typically assume a Gaussian additive noise model (in reality, the data is not truly Gaussian).
Given a noisy GW waveform, we would like to find an optimal procedure for inferring some set of
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the unknown GW parameters. Such a procedure should be able to give us an accurate estimate of the
parameters of our observed signal, whilst accounting for the uncertainty arising from the noise in the
data.

According to Bayes’ Theorem, a posterior probability distribution on a set of parameters, conditional
on the measured data, can be represented as

p(x|y) ∝ p(y|x)p(x), (1)

where x are the parameters, y is the observed data, p(x|y) is the posterior, p(y|x) is the likelihood,
and p(x) is the prior on the parameters. The constant of proportionality, which we omit here, is p(y),
the probability of our data, known as the Bayesian evidence or the marginal likelihood. We typically
ignore p(y) since it is a constant and for parameter estimation purposes we are only interested in the
shape of the posterior.

Due to the size of the parameter space typically encountered in GW parameter estimation and the
volume of data analysed, we must stochastically sample the parameter space in order to estimate the
posterior. Sampling is done using a variety of techniques including Nested Sampling [20, 24, 22]
and Markov chain Monte Carlo methods [8, 26]. The primary software tools used by the advanced
Laser Interferometer Gravitational wave Observatory (LIGO) parameter estimation analysis are
LALInference and Bilby [25, 7], which offer multiple sampling methods.

Recently, a type of neural network known as CVAE was shown to perform exceptionally well
when applied towards computational imaging inference [23, 21], text to image inference [27], high-
resolution synthetic image generation [16] and the fitting of incomplete heterogeneous data [15].
CVAEs, as part of the variational family of inference techniques are ideally suited to the problem
of function approximation and have the potential to be significantly faster than existing approaches.
It is therefore this type of machine learning network that we apply in the GW case to accurately
approximate the Bayesian posterior p(x|y), where x represents the physical parameters that govern
the GW signal, and are the quantities we are interested in inferring. The data y represents the noisy
measurement containing the GW signal and obtained from a network of GW detectors.

The construction of a CVAE begins with the definition of a quantity to be minimised (referred to as a
cost function). In our case we use the cross entropy, defined as

H(p, r) = −
∫
dx p(x|y) log rθ(x|y) (2)

between the true posterior p(x|y) and rθ(x|y), the parametric distribution that we will use neural
networks to model and which we aim to be equal to the true posterior. The parametric model is
constructed from a combination of 2 (encoder and decoder) neural networks rθ1(z|y) and rθ2(x|y, z)
where

rθ(x|y) =

∫
dz rθ1(z|y)rθ2(x|y, z). (3)

In this case the θ subscripts represent sets of trainable neural network parameters and the variable z
represents locations within a latent space. This latter object is typically a lower dimensional space
within which an encoder can represent the input data, and via marginalisation allows the construction
of a rich family of possible probability densities.

Starting from Eq. 2 it is possible to derive a computable bound for the cross-entropy that is reliant
on the rθ1 and rθ2 networks and a third “recognition” encoder network qφ(z|x, y) governed by the
trainable parameter-set φ. The details of the derivation are described in [23, 9] but equate to an
optimisation of the evidence lower bound (ELBO). The final form of the cross-entropy cost function
is given by the bound
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The cost function is composed of 2 terms, the “reconstruction” cost L which is a measure of how
well the decoder network rθ2 predicts the true signal parameters x, and the Kullback–Leibler (KL)-
divergence cost that measures the similarity between the distributions modelled by the rθ1 and qφ
encoder networks. In practice, for each iteration of the training procedure, the integrations over x, y
and z are approximated by a sum over a batch of Nb draws from the user defined prior p(x), the
known likelihood p(y|x), and the recognition function qφ(z|, x, y). Details of the training procedure
are further explained in [9].

The implementation of the CVAE that we employ has a number of specific features that were included
in order to tailor the analysis to GW signals. The details of these enhancements are described in [9]
but in summary, the primary modifications are as follows, 1) Physically appropriate output decoder
distributions are used for each output parameter: von Mises-Fisher distribution on the sky location
parameters, von Mises distributions on periodic parameters, conditional truncated Gaussians for the
component masses, and truncated Gaussians for parameters with defined prior bounds. 2) Each of the
functions rθ1 , rθ2 , and qφ are modelled using deep convolutional neural networks with multi-detector
time-series represented as independent input channels. 3) The rθ1 encoder models an M = 16
component Gaussian mixture model within the nz = 10 dimensional latent space in order to capture
the corresponding typical multi-modal nature of GW posterior distributions.

2 Results

We present results on 256 multi-detector GW test BBH waveforms in simulated advanced detector
noise [1] from the LIGO Hanford, Livingston and Virgo detectors. We compare between variants of
the existing Bayesian approaches and our CVAE implementation which we call VItamin. Posteriors
produced by the Bilby inference library [7] are used as a benchmark in order to assess the efficiency
and quality of our machine learning approach with the existing methods for posterior sampling.

For the benchmark analysis we assume that 9 parameters are unknown1: the component masses
m1,m2, the luminosity distance dL, the sky position α, δ, the binary inclination Θjn, the GW
polarisation angle ψ, the time of coalescence t0, and the phase at coalescence φ0. For each parameter
we use a uniform prior with the exception of the declination and inclination parameters for which
we use priors uniform in cos δ and sin Θjn respectively. We use a sampling frequency of 256 Hz,
a time-series duration of 1 second, and the waveform model used is IMRPhenomPv2 [13] with a
minimum cutoff frequency of 20Hz. For each input test waveform we run the benchmark analysis
using multiple sampling algorithms available within Bilby. For each run and sampler we extract
O(104) samples from the posterior on the 9 physical parameters.

The VItamin training process uses as input 107 whitened waveforms corresponding to parameters
drawn from the same priors as assumed for the benchmark analysis. The waveforms are also of
identical duration, sampling frequency, and use the same waveform model as in the benchmark
analysis. The signals are whitened2 using the same advanced detector PSDs [1] as assumed in the
benchmark analysis. When each whitened waveform is placed within a training batch it is given
a unique detector Gaussian noise realisation (after signal whitening this is simply zero mean, unit
variance Gaussian noise). The VItamin posterior results are produced by passing each of our 256
whitened noisy testing set of GW waveforms as input into the testing path of the pre-trained CVAE.
For each input waveform we sample until we have generated 104 posterior samples on 7 physical
parameters x = (m1,m2, dL, t0,Θjn, α, δ). We choose to output a subset of the full 9-dimensional

1Our analysis omits the 6 additional parameters required to model the spin of each BBH component mass.
2The whitening is used primarily to scale the input to a magnitude range more suitable to neural networks.

The true power spectral density (PSD) does not have to be used for whitening, but training data and test data
must be contain signals that share the same PSD.
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Figure 1: Corner plot showing one and two-dimensional marginalised posterior distributions on
the GW parameters for one example test dataset. Filled red contours represent the two-dimensional
joint posteriors obtained from VItamin and solid blue and green contours are the corresponding
posteriors output from our benchmark analyses (using the Dynesty and ptemcee samplers within
Bilby). In each case, the contour boundaries enclose 68, 90 and 95% probability. One dimensional
histograms of the posterior distribution for each parameter from both methods are plotted along the
diagonal. Black vertical and horizontal lines denote the true parameter values of the simulated signal.
At the top of the figure we include a Mollweide projection of the sky location posteriors from all
three analyses. All results presented in this letter correspond to a three-detector configuration but
for clarity we only plot the H1 whitened noisy time-series y and the noise-free whitened signal (in
blue and cyan respectively) to the right of the figure. The test signal was simulated with an optimal
multi-detector signal-to-noise ratio of 17.2.

space to demonstrate that parameters (such as φ0 and ψ in this case) can (if desired) be marginalised
out within the CVAE procedure itself, rather than after training.

We can immediately illustrate the accuracy of our machine learning predictions by directly plotting 2
and one-dimensional marginalised posteriors generated using the output samples from our VItamin
and Bilby approaches superimposed on each other. We show this for one example test dataset in
Fig. 1 where strong agreement between 2 Bilby samplers (Dynesty in blue, and ptemcee in green)
and the CVAE (red) is clear. It is also evident that whilst we refer to the Bilby sampler results as
benchmark cases, different existing samplers do not perfectly agree with each other. For each of
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our 256 test cases we see equivalent levels of disparity between pairs of benchmark samplers and
between any benchmark sampler and our CVAE results. In [9] we also show the results of 2 statistical
tests (the probability-probability (p-p) plot test and KL-divergence tests) performed on the entire test
dataset and between all samplers (Dynesty, ptemcee, CPNest, emcee, and VItamin).

The dominating computational cost of running VItamin lies in the training time, which takes O(1)
day to complete. We stress that once trained, there is no need to retrain the network unless the
user wishes to use different priors p(x) or assume different noise characteristics. Run-time for the
benchmark samplers is defined as the time to complete their analyses when configured using the
parameter choices. For VItamin, this time is defined as the total time to produce 104 samples. For
our test case of BBH signals VItamin produces samples from the posterior at a rate which is ∼ 6
orders of magnitude faster than our benchmark analyses using current inference techniques.

3 Conclusions

In this extended abstract we have demonstrated that we are able to reproduce, to a high degree of
accuracy, Bayesian posterior probability distributions generated through machine learning. This
is accomplished using a CVAE trained on simulated GW signals and does not require the input
of precomputed posterior estimates. We have demonstrated that our neural network model, which
when trained, can reproduce complete and accurate posterior estimates in a fraction of a second,
achieves the same quality of results as the trusted benchmark analyses used within the LIGO-Virgo
Collaboration.

The significance of our results is most evident in the orders of magnitude increase in speed over
existing algorithms. We have demonstrated the approach using BBH signals but with additional work
to increase sample rate and signal duration, the method can also be extended for application to signals
from BNS mergers (e.g., GW170817 [4], and GW190425 [6]) and NSBH systems where improved
low-latency alerts will be especially pertinent. Current Bayesian analyses limit the amount of lead
time we are able to give other EM partners in order to slew their telescopes to the optimal location in
the sky. By using our approach, parameter estimation speed will no longer be a limiting factor3 in
observing the prompt EM emission expected on shorter time scales than is achievable with existing
LIGO-Virgo Collaboration (LVC) analysis tools such as Bayestar [19].

The predicted number of future detections of BNS mergers (∼ 180 [5]) will severely strain the GW
community’s current computational resources using existing Bayesian methods. We anticipate that
future iterations of our approach will provide full-parameter estimation on all classes of compact
binary coalescence (CBC) signals in O(1) second on single graphics processing units (GPUs). Our
trained network is also modular, and can be shared and used easily by any user to produce results. The
specific analysis described in this paper assumes a uniform prior on the signal parameters. However,
this is a choice and the network can be trained with any prior the user demands, or users can cheaply
resample accordingly from the output of the network trained on the uniform prior. We also note
that our method will be invaluable for population studies since populations may now be generated
and analysed in a fully-Bayesian manner on a vastly reduced time scale. Our work can naturally be
extended to include the full range of CBC signal types but also to any and all other parameterised GW
signals and to analyses of GW data beyond that of ground based experiments. Given the abundant
benefits of this method, we hope that a variant of this of approach will form the basis for future GW
parameter estimation.

Broader Impact

Our work may be applied to a wide range of applications within the GW community (population
studies, rapid EM partner astronomer GW signal sky localisation alerts, etc.). In terms of reliability,
our CVAE approach is currently just as reliant on accurate noise and signal models as existing
techniques. However, there is the potential to step away from this reliance in the future and to make
our results more robust against these important effects than is possible with existing techniques.

3A complete low-latency pipeline includes a number of steps. The process of GW data acquisition is followed
by the transfer of data. There is then the corresponding candidate event identification, parameter estimation
analysis, and the subsequent communication of results to the EM astronomy community after which there are
physical aspects such as slewing observing instruments to the correct pointing.
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In reality, GW detectors are also affected by non-Gaussian noise artefacts and time-dependent
variation in the detector noise PSD. Existing methods incorporate a parameterised PSD estimation
into their inference [14]. To account for these and to exploit the “likelihood-free” nature of the CVAE
approach, we could re-train our network at regular intervals using samples of real detector noise
(preferably recent examples to best reflect the state of the detectors). In this case we could also apply
transfer learning to speed up each training instance based on the previously trained network state.
Alternatively, since the PSD is an estimated quantity, we could marginalise over its uncertainty by
providing training data whitened by samples drawn from a distribution of possible PSDs.

Outside of gravitational wave astronomy, our approach can potentially be applied to a wide range
of other areas where rapid predictions and decisions are needed. This can improve classifiers in
healthcare, but can also improve apps which may have positive or negative consequences (military or
privacy related) [23, 21, 27, 16, 15].
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