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Abstract

Inverse design of a property that depends on the steady-state (SS) of an
open quantum system (OQS) is commonly done by grid-search type of
methods. In this paper we present a new methodology that
allows us to compute the gradient of the steady-state of an
open quantum system with respect to any parameter of the
Hamiltonian using the implicit differentiation theorem. As an
example, we present a simulation of a spin-boson model where the
steady-state solution is obtained using Redfield theory.

Background: Steady-state

• For many open quantum systems the properties of interest are related
to the steady-state, ρss, dρ(t)

dt = 0.

1. Energy transfer efficiency in biological systems excited by natural
incoherent light.

2. Performance of quantum heat engines or refrigerators.

• What if we could learn how ρss changes with respect to
any parameters of the Hamiltonian (θi)?→ ∂ρss

∂θi
.

Implicit Differentiation of the steady-state (1/2)

• Goal: Compute the gradient of the steady state with respect to the
Hamiltonian parameters, ∂ρ

ss

∂θi
.

• We solve for the SS using an ODE solver for a sufficiently long period
of time.
Problem: To differentiate through the internals of the ODE solver
requires,

1. Store the entire trajectory of ρ(t) → memory demanding

2. Solving ρ(t) in reverse time → impossible for ρss

Solution:
• ρss is the solution of a fixed point problem.
• The Jacobian dρss

dθ can be expressed using the implicit function
theorem,

dρss

dθ
= −

(
df (ρss,θ)

dρ

)−1 [df (ρss,θ)

dθ

]
. (1)

Implicit Differentiation of the steady-state (2/2)

Advantages:
• Constant memory cost
• Does not require how ρss is computed as long as it satisfies the

steady-state criterion, f (ρss,θ) = 0.

Scalar loss function L(θ, ρss):
• Gradient with respect to parameters can be factored with the chain

rule dL
dρss

dρss

dθ .

• All gradients were computed using JAXI .

Background: Spin-Boson model

• The spin-boson (SB) model is commonly used to describe a wide
variety of physical phenomenaII ,
• Electron/Energy transfer or Heat transport

The total Hamiltonian is,

HS =
ε

2
σz +

∆

2
σx, HB =

∑
k

ωkb
†
kbk, HSB = σz

∑
k

λk(b†k + bk), (2)

where b†k (bk) is the creation (annihilation) operator of mode k in the
bath, σz and σx are Pauli matrices, and {λk} are the coupling strength
parameters, and ε and ∆ are system parameters. • In the Redfield theory
(RT), equations of motions areIII ,

∂ρµ,ν(t)

∂t
= −iωµ,νρµ,ν(t) +

∑
κ,λ

Rµ,ν,κ,λ ρκ,λ(t), (3)

Rµ,ν,κ,λ are the Redfield tensors which describe the interaction of the
system and bath and are given by,

Rµ,ν,κ,λ = Γ+
λ,ν,µ,κ + Γ−λ,ν,µ,κ − δν,λ

∑
α

Γ+
µ,α,α,κ − δµ,κ

∑
α

Γ+
λ,α,α,ν, (4)

which contain the transition rates,

Γ+
λ,ν,µ,κ = 〈λ|σz|ν〉〈µ|σz|κ〉

∫ ∞
0

dτF (τ )e−iωµ,κτ , Γ−λ,ν,µ,κ = 〈λ|σz|ν〉〈µ|σz|κ〉
∫ ∞

0

dτF ∗(τ )e−iωλ,ντ ,

that are in turn comprised of the bath correlation function,

F (τ ) =

∫ ∞
0

dω g(ω) [coth(βω/2) cos(ωτ )− i sin(ωτ )] . (5)

where [µ, ν, κ, λ] are eigenstates of HS. g(ω) is the super Ohmic
spectral density function, and η is the bath friction parameter that is on
the order of λ2

k and β is the inverse temperature.

Results: Sensitivity analysis

•Loss: Population difference at equilibrium for the SB model,
〈σz〉 = Tr[σzρ

ss].

Figure: The inset of each figure compares the gradient computed with Eq. (1) (blue solid
curve) and finite differences (orange solid curve). For all calculations, except for the
parameter in play, we used β = 0.1, η = 0.01, wc = 1, ε = 0.1, and ∆ = 0. The initial
density matrix used was ρS(t0) = [3/4,−i

√
3

4 , i
√

3
4 , 1/4].

Results: Inverse design

•Goal: Inverse design of the system parameters (ε,∆) to reproduce a

target ˆ〈σz〉; L(ε,∆) =
∥∥∥〈σz〉 − ˆ〈σz〉

∥∥∥
2
.

Figure: The iterations of the optimization procedure in the parameter space
for different random initialization. ∂L

∂ε and ∂L
∂∆ used in the Adam optimizer

were computed with Eq. (1); the learning rate was set to 0.1. For all

calculations, we used β = 0.1, η = 0.10, wc = 1. and ˆ〈σz〉 = 0.04996.
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