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Abstract

Generative Adversarial Networks (GANs) have been widely used for generating
photo-realistic images [1, 2, 3]. In this work, we develop physics-informed meth-
ods for generative enrichment of turbulence. We incorporate a physics-informed
learning approach to minimize the residuals of the governing equations for the
generated data. We analyze two physics-informed models including a GAN model,
and show that they outperform tricubic interpolation. We also show that using
physics-informed learning can significantly improve the model’s ability to gener-
ate data that satisfies the physical constraints. Finally, we analyze the generated
enriched data to show that it is able to recover statistical metrics of the flow field
including energy metrics.

Predicting turbulence accurately is extremely challenging especially in capturing high-order statistics
due to its intermittent nature. While numerical methods provide a path to attain approximate solutions,
the computational resources required for engineering applications can be quite large, especially when
the flows are highly turbulent, where a broad range of spatial and temporal scales appear. As a result,
reduced-order modeling of turbulent flows for low cost computations has been a popular research
area in fluid dynamics for decades. The use of machine learning (ML) for turbulence modeling has
not received much attention until recent years [4, 5, 6, 7, 8, 9, 10, 11]. All of these approaches have
focused on improving traditional turbulence models in some way. In some other works [12, 13],
physics-informed neural networks (NNs) were developed but only tested on 1D problems.

Ledig et al. [14] developed a GAN for super-resolution of images with state-of-the-art results. GANs
have been shown to perform better than other data driven approaches like principal component
analysis (PCA) in capturing high-order moments [15], and thus may be beneficial for turbulence
modeling. Directly extending the super-resolution GAN (SRGAN) [14] for turbulence enrichment
of 3D low resolution turbulence data may not be physically realistic as physical constraints are
not enforced. Incorporating the physical constraints into deep NNs (DNNs) such as the SRGAN
framework would be crucial to its performance in this context.

In this work, we propose a convolutional NN (CNN)-based residual block neural network [16]
(TEResNet) and a generative model based on SRGAN [14] (TEGAN) to enrich low resolution
turbulent fields with high wavenumber content using physics-informed technique. The input to our
model is a low resolution turbulent flow field that consists of four 3D fields. We then apply both
TEResNet and TEGAN to enrich each of these four fields by a factor of four in each spatial dimention.
Our results show that the proposed TEResNet and TEGAN models have better performance than
using tricubic interpolation for upsampling and the turbulence enriched data compares well with the
high resolution data.
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Figure 1: Architecture of generator and discriminator network with corresponding kernel size (k),
number of channels (n) and stride (s) indicated for each convolutional layer.

1 Problem definition and Dataset

The demonstration problem that we have chosen is the incompressible forced isotropic homogeneous
turbulence problem in a 3D periodic domain with size [0, 2π)× [0, 2π)× [0, 2π). From the incom-
pressible Navier–Stokes equations, the physical constraints for velocity and pressure fields are given
by the continuity and pressure Poisson equations respectively:

∇ · u = 0, −∇2p = ∇u : ∇uT , (1)

where u = [u, v, w]
T

= [u1, u2, u3]
T and p are the velocity vector, and kinematic pressure respec-

tively.

We perform a time-evolving Direct Numerical Simulation (DNS) on a N × N × N uniform grid
and collect snapshots separated in time by more than one integral time scale. This ensures that
each sample is statistically decorrelated from the rest of the samples. Each snapshot is comprised
of four fields - u, v, w and p. Low resolution data is then generated by filtering the high resolution
data down to N/4×N/4×N/4 using a compact support explicit filter. The filter is derived as an
approximation to the sharp spectral low-pass filter at cutoff of a quarter of the Nyquist wavenumber
with a compact stencil. The velocity components of the high resolution data are normalized (and
non-dimensionalized) by the root mean square of the velocity magnitude and the pressure by the
mean square of the velocity magnitude. An 80%-10%-10% split of the dataset is used for training,
testing and validation respectively. Sample images of the high and low resolution data are presented
in Section 3.

2 Methods

In this section, we describe the architecture and training methodology of the models employed for
the task of turbulence enrichment. The proposed GAN (TEGAN) is contrasted with a convolutional
residual network (TEResNet) which has the same architecture as the generator in TEGAN.

For the task of upsampling the low resolution data in a physically consistent manner, we use a
GAN[1] in a fashion similar to super-resolution applications for image data [14]. The generator has a
deep residual network architecture with each residual block having convolutional layers with batch
normalization. The discriminator has a deep convolutional architecture with fully connected layers in
the end for binary classification. The architectures of the generator and discriminator are depicted
pictorially in Figure 1.
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2.1 Loss functions and physics-informed learning

As discussed in a previous section, the flow fields are constrained by Equation (1). These equations
might not be satisfied by the model’s generated output. To counter this, the residuals of these
equations can be used as regularizers for the model through a physics loss term. The loss function
minimized for the generator network during training is a combination of a content loss Lcontent and a
physics loss Lphysics.

LGAN = (1− λA)Lresnet + λALadversarial, Lresnet = (1− λP)Lcontent + λPLphysics,

Lcontent = (1− λE)LMSE + λELenstrophy, Lphysics = (1− λC)Lpressure + λCLcontinuity.

whereLMSE is the mean squared error between the high resolution and generated fields andLenstrophy

is the mean squared error in the derived enstrophy field Ω (Ω = ω ·ω, where ω = ∇×u) to sensitize
the generator to high wavenumber content. Residuals of the continuity (Lcontinuity) and pressure
Poisson (Lpressure) equations given above similar to [12] make up the physics loss. The inclusion of
physics loss forces the network to generate physically more realizable solutions. Finally, Ladversarial

is the adversarial logistic loss function similar to that defined in [14]. To train the discriminator, we
use the logistic loss based on predicted labels for real and generated data.

2.2 Training

A model with just the residual network generator and without the adversarial component is termed
TEResNet. We first train TEResNet to convergence and tune hyperparameters like the number
of residual blocks and the physics loss parameters. The model with both the residual network
generator and the discriminator depicted above is termed TEGAN. The generator in TEGAN is first
initialized using the weights from a trained TEResNet while the discriminator is initialized using the
Xavier–He initialization [17, 18]. For the first few iterations in the training process (∼ 300), only the
discriminator alone is trained to negate the advantage that the generator has because of its pre-trained
weights. Then, both the generator and discriminator are trained together with the active adversarial
loss until the losses saturate and the discriminator’s output saturates at 0.5. The Adam optimizer [19]
is used for updating the weights and training both the networks.

3 Experiments

All experiments presented in this section are performed with N = 64. The Taylor scale Reynolds
number Rλ is ∼ 30. A total of 1160 snapshots were randomly split into 920, 120 and 120 as the
train, test and validation datasets.

3.1 Training convergence

A batch size of 5 is chosen for training of both TEResNet and TEGAN because of memory constraints
of the GPU used for training. We choose α = 1.0e−4 as the learning rate based on a hyper-parameter
search. We also examine the effect of the physics loss weight λP through experiments on TEResNet.
Figure 2 shows the content and physics losses during training of TEResNet with different values
for λP. We see that adding a non-zero weight to the physics loss improves the physics residual by
almost an order of magnitude. We choose λP = 0.125 as this gives good compromise between the
two losses. Another interesting observation is that for higher weightage to the physics loss, the trivial
solution of zero fields becomes a local minimum.

To improve the stability for training TEGAN, we add a staircase decay for the learning rate. We set
the decay rate to 0.5 and choose a decay step of 400 by running a case without learning rate decay and
estimating the number of steps required to get close to the minimum. Figure 2 shows the convergence
of TEGAN during training. It can be seen that the discriminator output for generated data saturates at
0.5 and the physics loss converges to a smaller value compared to the initial value from TEResNet.

3.2 Model evaluation

Figure 3 compares the qualities of upsampled data from tricubic interpolation, TEResNet and TEGAN.
Both TEResNet and TEGAN outperform the tricubic interpolation in reconstructing small-scale
features. This is also evident from the plots of the velocity energy spectra in Figure 4. The output
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Figure 2: Content loss (top left); physics loss (top right); discriminator output for generated data
(bottom left); physics loss of TEGAN (bottom right).

Figure 3: Plots are of the u component of velocity on a slice of the 3D field. From left to right: low
resolution, tricubic interpolation, TEResNet, TEGAN and high resolution fields.

from TEResNet and TEGAN are visually indistinguishable but Table 1 shows that there is a > 10%
improvement when using TEGAN over TEResNet in minimizing the physics loss while the content
losses of both models are similar. This implies that while both TEResNet and TEGAN perform
similarly when comparing the output fields to the high resolution data, TEGAN respects the physical
equations better. This helps TEGAN generalize better as is seen in Table 1 when evaluating on the
test dataset.
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Lcontent Lphysics

Dev Test Dev Test
TEResNet 0.049 0.050 0.078 0.085
TEGAN 0.047 0.047 0.070 0.072

% Difference 4.1 6.0 10.3 15.2
Table 1: Comparison of losses between TEResNet and TEGAN at the end of training.

Figure 4: Comparison of the velocity energy spec-
tra for the different upsampling methods.
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Figure 5: Comparison of the longitudinal two-
point correlation function for the different upsam-
pling methods.

Figure 5 shows the longitudinal two-point correlation function (see section 6.3 in [20]) for the different
methods. TEGAN is able to faithfully recover the function compared to the true high resolution values.
This implies that TEGAN recovers the energy in the fine scales as well as accurately represents the
statistical properties of the turbulent fields including derived statistical quantities like the integral
length scale.

4 Conclusions

In this work, we presented two physics-informed models, TEGAN and TEResNet, to enrich low
resolution turbulence data with finer scales using physics-based losses as regularizers. We have shown
the impacts of physics-based losses for improved performance of the networks. Both TEResNet and
TEGAN outperform traditional tricubic interpolation. Low resolution data enriched by TEGAN can
reconstruct important turbulent quantities such as the high wavenumber content in energy spectrum
and the longitudinal two-point correlation function. The TEGAN architecture can be further extended
with Wasserstein GAN models [21, 3] to improve training stability. Also, using wider distributions of
data and tasking the discriminator with physics-based classification along with discrimination can be
explored for better performance of the TEGAN in the future.

Broader Impact

The problem of physics-informed turbulence enrichment which we address is of broad interest in many
application domains, including wind farm modeling and the ‘grey zone’ modeling in atmospheric
science (where models of one fidelity are combined with models of different fidelity) and in eddy-
resolving simulations of engineering applications. We are not aware of any ethical issues or societal
concerns associated with this work. This work is of fundamental nature and not targeted at a specific
system, and we are not aware of any group or community which could be put at a disadvantage by
this work.
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