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Introduction
Turbulent flow is important in many engineering applica-
tions. However, simulating turbulence is computationally
very expensive due to extremely high resolution require-
ments. Large Eddy Simulations (LES) that simulate only
the large scales have become popular due to their much lower
cost, but require modeling of the small scales. Here, we pro-
pose to enrich LES data by populating it with small scales
obtained using a Generative Adversarial Network [1] (GAN).

Typical simulation of a turbulent flow
ref: B. Olson, LLNL

Problem Description
Aim: Given a low resolution realization of a flow field, can
we generate a physically realistic upsampled field that satis-
fies the governing equations?

Data
• High-resolution (HR) data is generated by numerically
solving the governing equations given by the
incompressible Navier-Stokes equations using an in-house
solver (PadeOps) with Reλ ∼ 30 and collecting 1280
snapshots in time
• Each snapshot is comprised of four fields: 3 components
of the velocity vector (u, v, w), and the kinematic
pressure (p) each of size 64× 64× 64
• Low-resolution data is generated by filtering the HR data
down to 16× 16× 16 using the explicit filter shown below
that’s derived as a best approximation to the sharp
spectral filter

0 π/4 π/2 3π/4 π

Normalized wavenumber

0.0

0.2

0.4

0.6

0.8

1.0

M
ag

n
it
u
d
e

explicit filter

spectral filter

Transfer function of the filter

• Train/Dev/Test split:
920 (79.3%)/120 (10.3%)/120 (10.3%)

Model
The architecture of TEGAN is similar to that in SRGAN [2] Training methodology

• TEResNet - the residual network
generator without an adversarial
component - is trained first with
different no. of residual blocks and
physics loss parameters
• The discriminator is trained for few
iterations without updating the
generator
• Train TEGAN (both generator and
discriminator)

3D filter with periodic padding is used in
the convolutional layer of the generator
and discriminator networks.

Loss Functions
The flow field is constrained by the continuity and pressure
Poisson equations:

∇ · u = 0,
−∇2p = ∇u : ∇uT

Loss function minimized for the generator network during train-
ing is a combination of

LGAN = (1− λA)Lresnet + λALadversarial
Lresnet = (1− λP)Lcontent + λPLphysics
Lcontent = (1− λE)LMSE + λELenstrophy
Lphysics = (1− λC)Lpressure + λCLcontinuity

•Content loss: Lcontent
LMSE: Mean squared error between the high resolution and
generated fields
Lenstrophy: Mean squared error in the derived enstrophy
field Ω (Ω = ω · ω, where ω = ∇× u) to sensitize the
generator to high frequency content
•Physics loss: Lphysics
Residuals of the continuity (Lcontinuity) and pressure
Poisson (Lpressure) equations given above similar to [3]
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•Adversarial loss: Ladversarial
To train the discriminator, we use the logistic loss based on
predicted labels for real and generated data.

Results
Comparison to tricubic interpolation and the ground truth

Comparisons of u, v, w velocity fields and pressure p from top to bottom

Evolution of the continuity residual during training

Discussion

Comparison of the content and physics losses for different
physics loss weights in TEResNet. The steps observed in the
content loss correspond to local minima of the physics loss
as seen in the figure on the right.

Discriminator output for generated data saturates at 0.5 and
the physics loss of TEGAN is smaller than that of the original
TEResNet.

Lcontent Lphysics
Dev Test Dev Test

TEResNet 0.049 0.050 0.078 0.085
TEGAN 0.047 0.047 0.070 0.072

% Difference 4.1 6.0 10.3 15.2
Table comparing the content and
physics losses on the dev and test
datasets for the TEResNet and
TEGAN models

Energy spectra of the
generated velocity
fields
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Two point velocity correlation
of the enriched fields shows
how much of the sub-scale
kinetic energy is captured by
the enrichment process.
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Two point triple velocity
correlation of the enriched
fields shows inter-scale energy
interaction processes.

References
[1] I. Goodfellow et al. “Generative adversarial nets”. In: Advances in neural infor-

mation processing systems. 2014, pp. 2672–2680.
[2] C. Ledig et al. “Photo-realistic single image super-resolution using a generative

adversarial network”. In: arXiv preprint (2016).
[3] M. Raissi et al. “Physics Informed Deep Learning (Part I): Data-driven Solutions

of Nonlinear Partial Differential Equations”. In: arXiv preprint arXiv:1711.10561
(2017).


	References

