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Motivation

Limited Real-world Observations
–Modeling natural phenomena with deep neural networks when only a limited
number of observations are available is challenging.

– The sparsely available sensor-based data cause substantial numerical error when
we utilize existing differential methods.

– Temporally short events and inevitable missing values from sensors further shorten
the length of fully-observed sequences.

Challenges in existing few-shot learning methods
– It is not easy to find a set of similar meta-tasks which provide shareable latent
representations needed to understand targeted observations.

– Unlike computer vision or NLP tasks where a common object (images or words)
is clearly defined, it is not straightforward to find analogous objects in the spa-
tiotemporal data.

– Exact equations behind natural phenomena are usually unknown, leading to the
difficulty in reproducing the similar dataset via simulation.
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Schematic overview of the physics-aware meta-learning (PiMetaL).

Contributions

Modularized PDEs and auxiliary tasks:
Inspired by forms of PDEs in physics, we decompose PDEs into shareable (spatial)
and adaptation (temporal) parts. The shareable one is PDE-independent and
specified by auxiliary tasks: supervision of spatial derivatives.

Physics-aware meta-learning:
We provide a framework for physics-aware meta-learning, which consists of PDE-
independent/-specific modules. The framework is flexible to be applied to the
modeling of different or unknown dynamics.

Synthetic data for shareable modules:
We extract shareable parameters in the spatial modules from synthetic data,
which can be generated from different dynamics easily.
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Examples of generated spatial function values and graph signals. Node and edge features (function
value and relative displacement, respectively) are used to approximate spatial derivatives (arrows).
We can adjust the number of nodes (spatial resolution), the number of edges (discretization), and
the degree of fluctuation (scale of derivatives) to differentiate meta-train tasks.

Modularized PDEs

Decomposability of Variants of a Continuity Equation
– One of fundamental equations in physics describing the transport of physical
quantity over space and time is a continuity equation:

∂ρ

∂t
+∇ · J = σ, (1)

where ρ is the amount of the target quantity (u) per unit volume, J is the flux
of the quantity, and σ is a source or sink, respectively.

– Based on the form of ρ and J with respect to a particular quantity u, Eq. 1 can
be generalized as:

∂u

∂t
= F (∇u,∇2u, . . . ), (2)

where the function F (·) describes how the target u is changed over time from its
spatial derivatives. This equation underlies many specific equations such as the
convection-diffusion equation and Navier-Stokes equations:

u̇ = ∇ · (D∇u)−∇ · (vu) +R, (Convection-Diffusion eqn.)
u̇ = −(u · ∇)u + ν∇2u−∇ω + g. (Incompressible Navier-Stokes eqn.)

– Inspired by the form of Eq. 2, we propose two modules: spatial derivative modules
(SDM) and time derivative modules (TDM).

Spatial Derivative Modules (SDM): PDE-independent Modules
Finite difference method (FDM) is used to compute a d-order derivative as a
linear combination of n-point stencil values.

∂du

∂xd
≈

n∑
i=1

αiu(xi), (3)

where n > d. Since Eq. 3 is independent for a form of F (·) in Eq. 2, we
can modularize spatial derivatives as PDE-independent modules and use them as
input of F (·).

Time Derivative Module (TDM): PDE-specific Module
– Once upto d-order derivatives are modularized by SDM, the approximated spatial
derivatives are fed into an additional module to learn the function F (·) in Eq. 2.

– This module is PDE-specific as the function F describes how the spatiotemporal
observations change.

Spatial Derivative Modules: Reusable Modules

–We have claimed that SDM provide reusable features associated with spatial
derivatives such as ∇xu,∇yu, and ∇2

xu across different dynamics or PDEs.
–We explore if the proposed SDM based on graph networks can be used as a
feature provider for different spatial functions and discretization.

Table: Prediction error (MAE) of the first (top) and second (bottom) order spatial derivatives.

(N,E, F ) (450,3,3) (450,3,7) (450,6,3) (450,6,7) (450,10,3) (450,10,7)

SDM (from scratch) 1.337±0.044
7.278±0.225

7.111±0.148
51.544±0.148

1.152±0.043
5.997±0.083

7.206±0.180
47.527±0.768

1.112±0.036
5.353±0.193

7.529±0.241
47.356±0.560

SDM (pretrained) 1.075±0.005
6.482±0.207

5.528±0.010
46.254±0.262

0.836±0.002
5.251±0.245

5.354±0.001
42.243±0.420

0.782±0.006
4.728±0.244

5.550±0.012
42.754±0.442

(N,E, F ) (800,3,3) (800,3,7) (800,6,3) (800,6,7) (800,10,3) (800,10,7)

SDM (from scratch) 1.022±0.030
7.196±0.159

5.699±0.242
49.602±0.715

0.789±0.021
5.386±0.136

5.179±0.069
42.509±1.080

0.718±0.010
4.536±0.204

5.517±0.110
39.642±1.173

SDM (pretrained) 0.927±0.006
6.553±0.193

4.415±0.011
44.591±0.002

0.656±0.008
4.960±0.266

3.977±0.025
37.629±0.760

0.570±0.006
4.213±0.275

4.107±0.019
35.849±0.947

Experimental Results

Graph Signal Generation Table: Multi-step prediction results (MSE).
T -shot Method AQI-CO ExtremeWeather

5-shot
FDM+RGN (scratch) 0.0291±0.0039 0.9883±0.5567
PA-DGN (scratch) 0.0363±0.0090 0.9653±0.1384
PiMetaL (meta-init) 0.0253±0.0055 0.9167±0.0746

7-shot
FDM+RGN (scratch) 0.0258±0.0023 0.7626±0.0602
PA-DGN (scratch) 0.0225±0.0018 0.7478±0.0199
PiMetaL (meta-init) 0.0182±0.0019 0.7274±0.0089

10-shot
FDM+RGN (scratch) 0.0213±0.0013 0.7090±0.0030
PA-DGN (scratch) 0.0146±0.0005 0.4156±0.0145
PiMetaL (meta-init) 0.0115±0.0004 0.4066±0.0247

We adopt a set of multi-step spa-
tiotemporal sequence generation
tasks to evaluate our proposed
framework on two real-world
dataset (AQI-CO [2]: air quality
index, ExtremeWeather [3]: the
extreme weather dataset).
Graph Signal Regression [4] conducted a graph signal regression task: predict
the temperature xt from the temperature on the previous 5 days (xt−5 : xt−1). We
split the GHCN dataset (Global Historical Climatology Network (GHCN) provided
by National Oceanic and Atmospheric Administration (NOAA) spatially into two
regions: (1) the USA (1,705 stations) and (2) Europe (EU) (703 stations) where
there are many weather stations full functioning.

Table: Graph signal regression results (MSE, 10−3) on the two regions of weather stations.

T -shot (Region) GCN GAT GraphSAGE GN PA-DGN PiMetaL
5-shot (USA) 2.742±0.120 2.549±0.115 2.128±0.146 2.252±0.131 1.950±0.152 1.794±0.130
10-shot (USA) 2.371±0.095 2.178±0.066 1.848±0.206 1.949±0.115 1.687±0.104 1.567±0.103
5-shot (EU) 1.218±0.218 1.161±0.234 1.165±0.248 1.181±0.210 0.914±0.167 0.781±0.019
10-shot (EU) 1.186±0.076 1.142±0.070 1.044±0.210 1.116±0.147 0.831±0.058 0.773±0.014

Conclusion

In this paper, we propose a framework for physics-aware meta-learning with auxil-
iary tasks. By incorporating PDE-independent knowledge (spatial derivatives) from
simulated data, the framework provide reusable features and the features help im-
prove the meta-test tasks with a limited amount of data.
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