

Graph Generative Adversarial Networks for Sparse Data Generation in High Energy Physics Raghav Kansal<sup>1</sup>, Javier Duarte<sup>1</sup>, Breno Orzari<sup>2</sup>, Thiago Tomei<sup>2</sup>, Maurizio Pierini<sup>3</sup>, Mary Touranakou<sup>3, 4</sup>, Jean-Roch Vlimant<sup>5</sup>, Dimitrios Gunopoulos<sup>4</sup> <sup>1</sup>UC San Diego, <sup>2</sup>Universidade Estadual Paulista, <sup>3</sup>CERN, <sup>4</sup>National and Kapodistrian University of Athens, <sup>5</sup>California Institute of Technology

# Particle Collision Simulations

- Simulations of collision events are important for data analysis in high energy physics
- Classical physics simulation programs are slow -O(min)/event
- Generative ML models may simulate at much higher speeds - O(ms)/event
- Current work on this involves linear or convolutional architectures
- These may not be well suited to the **sparsity** and irregular geometry of high energy data



 Linear/CNNs need to represent jets and detector data as images

- Graphs naturally suit the sparsity of HEP data and adapt to any geometry
- So we aim for a graph-based generative model



 $\mu$ 's,  $\Sigma$ 's are means and covariances of the activations of a pre-trained graph classifier on real and generated graphs

• For jets the I-Wasserstein  $(W_1)$  distance between meaningful feature distributions

• Future work will involve further applications to physics datasets, such as calorimeter data

 It's been successful on two MNIST-derived datasets and a jets dataset



• We achieved an average GFD of 0.52 and 0.30 respectively



real vs real real vs gen

real scores





## Results

 $W_1$  scores between pairs of 100 jets

|                           | $\mid \eta^{ m rel}$ | $\phi^{ m rel}$ | $p_{\mathrm{T}}^{\mathrm{rel}}$ | Jet $m/p_{\mathrm{T}}$ |
|---------------------------|----------------------|-----------------|---------------------------------|------------------------|
| $W_1 ~(\times 10^{-3})$   | $6\pm 2$             | $6\pm 2$        | $1.4\pm0.5$                     | $6\pm 2$               |
| $W_1 \; (\times 10^{-3})$ | $5\pm 2$             | $11 \pm 4$      | $2\pm 1$                        | $6\pm 2$               |

• Real vs generated scores all within ISD of real vs

Details can be found in our paper (20|2.00|73)