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• Simulations of collision events are important for 
data analysis in high energy physics

• Classical physics simulation programs are slow - 
O(min)/event 

• Generative ML models may simulate at much 
higher speeds - O(ms)/event

Particle Collision Simulations Datasets Graph GAN Results

• A GAN trains a discriminator and generator 
network iteratively and adversarially

• We use a message passing neural network 
architecture for both networks: 
Generator

• We tested on two MNIST-derived datasets  
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• And a dataset of gluon jets - taking 30 highest 
 particles and their  featurespT [ηrel, ϕrel, prel

T ]

• We use a new Graph Frèchet Distance (GFD) 
metric (FID inspired) for MNIST datasets

Evaluation

• We achieved an average GFD of 0.52 and 0.30 
respectively

GFD = | | ⃗μ r − ⃗μ g | |2 + Tr( ⃗Σ r + ⃗Σ g − 2( ⃗Σ r
⃗Σ g)1/2)

’s, ’s are means and covariances of the activations of a 
pre-trained graph classifier on real and generated graphs
μ Σ

• For jets the 1-Wasserstein ( ) distance 
between meaningful feature distributions

W1

• All three datasets are represented as graphs:

Real Generated Real Generated
Sparse MNIST MNIST Superpixels

Feature distributions of real and generated samples of jets
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• Real vs generated scores all within 1SD of real vs 
real scores

Summary

• We develop a novel Graph GAN 

• Useful for sparse data and irregular geometry

• It’s been successful on two MNIST-derived 
datasets and a jets dataset

• Future work will involve further applications to 
physics datasets, such as calorimeter data

Details can be found in our paper
(2012.00173)
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image

MNIST Superpixels 
(Monti et al. (2016))

Sparsified MNIST 
(in analogy to jets or detector data)

 scores between pairs of 100 jetsW1

Calorimeter data Jet image

• Current work on this involves linear or 
convolutional architectures

• These may not be well suited to the sparsity 
and irregular geometry of high energy data  

• Linear/CNNs need to represent jets and 
detector data as images

• Graphs naturally suit the sparsity of HEP 
data and adapt to any geometry

• So we aim for a graph-based generative 
model
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