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Abstract

We present Tails, an open-source deep-learning framework for the identification
and localization of comets in the image data of the Zwicky Transient Facility (ZTF),
a robotic time-domain sky survey currently in operation at the Palomar Observatory
in California, USA. Tails employs a customized EfficientDet-based architecture and
is capable of finding comets in single images in near real time, rather than requiring
multiple epochs as with traditional methods. The system achieves state-of-the-art
performance with over 99% recall, 0.01% false positive rate, and 1-2 pixel root
mean square error in the predicted position. We report the initial results of the Tails
efficiency evaluation in a production setting on the data of the ZTF Twilight survey,
including the first AI-assisted discovery of a comet (C/2020 T2).

1 Introduction

Comets have mesmerized humans for millennia, frequently offering, arguably, some of the most
spectacular sights in the night sky. Containing the original materials from when the Solar system first
formed, comets provide a unique insight into the distant past of our Solar system. The recent discovery
of the first interstellar comet 2I/Borisov by amateur astronomer Gennadiy Borisov predictably sparked
much excitement and enthusiasm among astronomers and the general public alike. Such objects
could potentially provide important information on the formation of other stellar systems. It is a very
exciting time to look for comets: the large-scale time-domain surveys that are currently in operation,
such as the ZTF [1], Pan-STARRS [3], or ATLAS [18], and the upcoming ones such as BlackGEM
[2] and Vera Rubin Observatory / LSST [12] offer the richest data sets ever available to mine for
comets.

Traditional comet detection algorithms rely on multiple observations of cometary objects that are
linked together and used to fit an orbital solution. The previous attempts to take the comet’s
morphology in the optical image data into consideration in the detection algorithms have not led to
reliable and robust results.

In this work, we present Tails - a state-of-the-art open-source deep-learning-based system for the
identification and localization of comets in the image data of ZTF2. Tails employs an EfficientDet-
based architecture [17] and is thus capable of finding comets in single images in near real time, rather
than requiring multiple epochs as with traditional methods.
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1.1 The Zwicky Transient Facility

The Zwicky Transient Facility (ZTF)3 is a state-of-the-art robotic time-domain sky survey capable of
visiting the entire visible sky north of −30◦ declination every night. ZTF observes the optical sky in
the g, r, and i bands4 at different cadences depending on the scientific program and sky region [1, 9],
down to a 5σ detection limit of 20.7 mag in the r band with a 30-second exposure during new moon
[5, 15].

ZTF has been running a unique survey, the Twilight Survey (ZTF-TS) that operates at Solar elonga-
tions down to 35 degrees with an r-band limiting magnitude of 19.5 [19]. ZTF-TS has so far resulted
in the discovery of a number of Atira asteroids as well as the first Vatira object 2020 AV2 (an asteroid
inside Venus’s orbit) [11].

For obvious reasons, comets become more easily detectable when close to the Sun as they become
brighter and start exhibiting more pronounced coma and tails. Furthermore, it has been shown that the
most detectable direction of approach of an interstellar object is from directly behind the Sun because
that direction has a bigger cross section for asteroids to bend around and pass into the visibility
volume [6].

Tails automates the search for comets with detectable morphology. While trained and evaluated on a
large corpus of ZTF data, in this work we focus on Tails’ performance when applied to the ZTF-TS
data.

2 Tails: a deep learning framework for the identification and localization of
comets

The art of building applied deep learning systems involves two major challenges: finding a suitable
network architecture and, more importantly, constructing a large, labeled, representative data set
for the network training. In the case of comet detection, the training set must reflect the possible
variations across different seeing conditions, filters, sky location, CCDs, as well as cross-talk.

2.1 Data set

To build a seed sample for labeling, we first identified all potential observations of known comets
conducted with ZTF from March 5, 2018 - March 4, 2020, based on their predicted position and
brightness. The code for accomplishing that is based on the python libraries pypride [7] and
solarsyslib [13] and uses the comet ephemerides obtained from the Minor Planet Center (MPC)5

for a coarse search, followed by a JPL Horizons6 query for precision.

To provide more contextual information, epochal image data are supplemented by properly aligned
reference images of the corresponding patches of sky and difference (epochal minus reference)
images generated with the ZOGY algorithm [20], all produced by the ZTF Science Data System at
Caltech’s IPAC. Finally, we generate image triplet cutouts of size 256 by 256 pixel, which in angular
measure translates into 4.3 by 4.3 arcmin at ZTF’s pixel scale of 1.01 arcsec / pix.

We selected over 60,000 individual observations with the total comet magnitude ranging from 10 to
23 (as reported by JPL Horizons), out of which about 20,000 were sourced for manual annotation.
This resulted in an initial sample of 3,000 examples with identifiable morphology.

We also compiled a set of approximately 20,000 negative examples consisting of point-like cometary
detections, patches of sky with no identified transient or variable sources, CCD-edge cases, and a
wide range of real (point-source) transient and bogus (e.g. artifacts due to bright stars, optical ghosts
and “dementors”) samples from the Braai data set [8].

To expand the data set, we then assembled a simple ResNet-based [10] classifier for comet identifica-
tion. With this basic classification model, we ran several rounds of an active-learning-like procedure,
where we would first train the classifier, evaluate it on the whole data set, sample both confident

3https://ztf.caltech.edu
4Please see [1] for the exact definitions of the filter pass bands.
5https://www.minorplanetcenter.net/iau/MPCORB/CometEls.txt
6https://ssd.jpl.nasa.gov/horizons.cgi
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Figure 1: Tails architecture: a custom EfficientDet D0-based network [17]. A batch of duplet or
triplet image stacks of size (nb, 256, 256, [2|3]), correspondingly, is passed through an EfficientNet
B0 backbone, where (nb) is the number of stacks in the batch. The extracted features from the
last five blocks/levels of the backbone network are passed through a bidirectional feature-pyramid
network (BiFPN). The resulting five output tensors denoted in colored circles are fed into the head
network, which outputs the probability of the image containing a comet pc and its predicted relative
position (x, y).

predictions and the cases close to the classifier’s decision boundary, manually inspect and label those
examples and add them to the training set.

The resulting training data set contains about 5,000 positive and 22,000 negative examples. Each
triplet in the set has been assigned a label [pc, x, y], where pc is the probability of the presence of a
comet in the image, x, y ∈ [0, 1] – the relative positions of the comet’s “center of mass”, as reported
by JPL Horizons. For positive examples, this translates into [1, xJPL, yJPL], for negative ones –
[0, ?, ?], where question marks mean that these do not affect the loss in this case.

2.2 Deep neural network architecture and training

Tails adopts a custom architecture (see Fig. 1) based on EfficientDet D0 [17]. A batch of triplet image
stacks of size (nb, 256, 256, 3), where (nb) is the number of stacks in the batch, is passed through an
EfficientNet B0 backbone [16]. The extracted features from the last five blocks/levels of the network
are passed through a weighted bidirectional feature-pyramid network (BiFPN) first proposed in [17].
The resulting five output tensors denoted in colored circles are fed into the head network, which
outputs the probability of the image containing a comet pc and its predicted relative (x, y) position.

We defined the loss function as follows:

L = wc · Lc + wp · Lp (1)

where Lc denotes the binary cross-entropy function for the label c (1 – there is a comet in the image,
0 – there is no comet) and the predicted probability pc. If bpce = 1, Lp is computed as an L1 loss
for the relative position (x, y) and its prediction (xp, yp) with a small L2 regularizing term (with
ε = 10−3). The weights of the two terms are denoted by wc and wp, respectively.

We employed the Adam optimizer [14], a batch size of 32, and a 81%/9%/10% training/validation/test
data split. For data augmentation, we applied random horizontal and vertical flips of the input data;
no random rotations and translations were added. Standard techniques such as learning rate reduction
on plateau and early stopping were also used to improve the performance.
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The EfficientNet’s weights were randomly initialized7. We first set wc = 10, wp = 1 to allow for
a fast convergence of the feature-extracting part of the network (i.e. by not paying much attention
to the part of the network responsible for the comet localization). To fine-tune the performance, we
trained Tails on a balanced data set setting wc = 1.1, wp = 1 and monitored the validation loss for
early stopping, then bumped wp = 2 and monitored the validation positional RMSE; finally, added
the omitted negative examples and again monitored the validation loss for early stopping.

The resulting classifiers were put through the same active-learning-like procedure as was employed
in the initial data set assembly, using several months of ZTF Twilight survey data.

3 Tails performance

Evaluated on the test set, Tails demonstrates a 99% label prediction accuracy and recall, 0.01% false
positive rate, and a ∼ 1− 2 pixel median RMSE of the predicted comet “centroid” position versus
the one acquired from JPL Horizon (reference).

The ZTF instrument’s CCD mosaic has 16 individual 6k × 6k science CCDs. The raw ZTF image
data are split into four readout quadrants per CCD and all processing is conducted independently on
each CCD readout quadrant. We tessellate each 3k × 3k CCD-quadrant image into a 13 × 13 grid of
overlapping 256 × 256 pixels tiles and evaluate Tails on those.8

Tails has been deployed in production since June 2020. It takes about 5 hours to run inference on a
typical set of nightly ZTF Twilight data (∼ 45 30-second exposures) on an e2-highcpu-32 instance
(32 vCPU, 32 GB memory, SSD disk) on the Google Cloud Platform, including I/O operations.

Consistently with the test set performance and the expected rate of comet observation, a typical run
yields a few dozen candidates that are manually inspected using a simple Jupyter9 notebook that
automatically checks for known Solar system objects via the MPChecker10. The scanning results are
accumulated and used to expand the training set and improve Tails’ performance.

Fig. 2 shows a number of comets identified and localized by Tails, including some of the ZTF
observations of the comet 2I/Borisov.

3.1 Discovery of comet C/2020 T2

On October 7, 2020, Tails discovered a candidate that was posted to MPC’s Possible Comet Confir-
mation Page11 as ZTFDD01. It was later confirmed to be a long-period comet and designated C/2020
T2 (Palomar), marking the first DL-assisted comet discovery [4]. The candidate was found in the
Twilight survey data; it was at 19.3 mag in the r band (see Fig. 2 (a)).

4 Discussion

This work demonstrates the potential of the state-of-the-art deep-learning computer-vision architec-
ture designs when applied to the problem of astronomical source detection and localization. We
experimented with the input data and trained a version of Tails that instead of triplet image stacks
uses duplets – epochal/reference images, omitting the ZOGY difference images. Our tests show that
this version achieves essentially the same performance as the one trained on triplets without requiring
image differencing, expanding the range of potential use cases of Tails.

While Tails is trained only on ZTF data, with transfer learning, it can be easily adapted to other sky
surveys, including the upcoming Vera Rubin Observatory’s Legacy Survey of Space and Time (LSST)
[12].

7We experimented with pre-trained weights, however that neither helped the network to reach convergence
faster, nor did it affect the final performance. We believe this is likely due to the fact that astronomical images
are very different from those in commonly-used data sets.

8Standard fully-convolutional approaches often used in computer vision proved to be an overkill in this case.
9https://jupyter.org

10https://www.minorplanetcenter.net/cgi-bin/checkmp.cgi
11https://minorplanetcenter.net/iau/NEO/pccp_tabular.html
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(a) C/2020 T2 (Palomar) discovered with Tails on
2020/10/07

(b) 2I/Borisov observed on 2019/10/15

(c) C/2019 D1 (Flewelling) observed on 2019/07/22 (d) 260P/McNaught observed on 2019/10/19

Figure 2: Examples of comets identified and localized by Tails, including C/2020 T2, the first
AI-assisted discovery of a comet (a). For each image triplet, the left pane shows the epochal science
exposure, the middle pane – the reference image of the corresponding patch of sky, and the right pane
– the ZOGY difference image.

Broader Impact

We believe that this work may enable discoveries of new, potentially exciting, celestial objects. While
Tails is trained only on ZTF data, with transfer learning, it can be easily adapted to other sky surveys,
both ground- and space-based, including the upcoming Vera Rubin Observatory’s Legacy Survey of
Space and Time (LSST).

Acknowledgments and Disclosure of Funding

D. A. Duev would like to thank Ivan Duev for assistance with data labeling; Bryce Bolin, Michael
Kelley, Ashish Mahabal, and Matthew Graham for their support and useful discussions.

D. A. Duev acknowledges support from Google Cloud and from the Heising-Simons Foundation
under Grant No. 12540303.

Based on observations obtained with the Samuel Oschin Telescope 48-inch Telescope at the Palomar
Observatory as part of the Zwicky Transient Facility project. ZTF is supported by the National
Science Foundation under Grant No. AST-1440341 and a collaboration including Caltech, IPAC,
the Weizmann Institute for Science, the Oskar Klein Center at Stockholm University, the University
of Maryland, the University of Washington, Deutsches Elektronen-Synchrotron and Humboldt
University, Los Alamos National Laboratories, the TANGO Consortium of Taiwan, the University of
Wisconsin at Milwaukee, and Lawrence Berkeley National Laboratories. Operations are conducted
by COO, IPAC, and UW.

References
[1] E. C. Bellm et al. “The Zwicky Transient Facility: System Overview, Performance, and First

Results”. In: PASP 131.995 (Jan. 2019), p. 018002. DOI: 10.1088/1538-3873/aaecbe.
arXiv: 1902.01932 [astro-ph.IM].

[2] S. Bloemen et al. “MeerLICHT and BlackGEM: custom-built telescopes to detect faint optical
transients”. In: Ground-based and Airborne Telescopes VI. Vol. 9906. Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Series. July 2016, p. 990664. DOI:
10.1117/12.2232522.

[3] K. C. Chambers et al. “The Pan-STARRS1 Surveys”. In: arXiv e-prints, arXiv:1612.05560
(Dec. 2016), arXiv:1612.05560. arXiv: 1612.05560 [astro-ph.IM].

[4] “Comet C/2020 T2 (Palomar)”. In: Minor Planet Electronic Circulars 2020-U170 (2020).

5

https://doi.org/10.1088/1538-3873/aaecbe
https://arxiv.org/abs/1902.01932
https://doi.org/10.1117/12.2232522
https://arxiv.org/abs/1612.05560


[5] R. Dekany et al. “The Zwicky Transient Facility: Observing System”. In: PASP 132.1009,
038001 (Mar. 2020), p. 038001. DOI: 10.1088/1538-3873/ab4ca2. arXiv: 2008.04923
[astro-ph.IM].

[6] A. Do, M. A. Tucker, and J. Tonry. “Interstellar Interlopers: Number Density and Origin of
‘Oumuamua-like Objects”. In: ApJL 855.1, L10 (Mar. 2018), p. L10. DOI: 10.3847/2041-
8213/aaae67. arXiv: 1801.02821 [astro-ph.EP].

[7] D. A. Duev et al. “Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique:
A test case of the Mars Express Phobos fly-by”. In: A&A 593, A34 (Sept. 2016), A34. DOI:
10.1051/0004-6361/201628869. arXiv: 1606.05841 [astro-ph.IM].

[8] D. A. Duev et al. “Real-bogus classification for the Zwicky Transient Facility using deep
learning”. In: MNRAS 489.3 (Nov. 2019), pp. 3582–3590. DOI: 10.1093/mnras/stz2357.
arXiv: 1907.11259 [astro-ph.IM].

[9] M. J. Graham et al. “The Zwicky Transient Facility: Science Objectives”. In: PASP 131.1001
(July 2019), p. 078001. DOI: 10 . 1088 / 1538 - 3873 / ab006c. arXiv: 1902 . 01945
[astro-ph.IM].

[10] K. He et al. “Deep Residual Learning for Image Recognition”. In: arXiv e-prints,
arXiv:1512.03385 (Dec. 2015), arXiv:1512.03385. arXiv: 1512.03385 [cs.CV].

[11] W.-H. Ip et al. “A kilometer-scale asteroid inside Venus’s orbit”. In: arXiv e-prints,
arXiv:2009.04125 (Sept. 2020), arXiv:2009.04125. arXiv: 2009.04125 [astro-ph.EP].
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