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Abstract

Variational quantum Monte Carlo (variational QMC) is an ab-initio method for
solving the electronic Schrödinger equation that is exact in principle, but limited by
the functional form used to represent the electronic wavefunction in practice. The
recent deep-neural-network ansatzes PauliNet and FermiNet increased the accuracy
of variational QMC dramatically, but little is understood about the convergence
behavior of such ansatzes. Here, we show that a deep neural network can overcome
the limitations of a small one-electron basis set and approach the complete-basis-set
limit, and that an ansatz with a deep Jastrow factor can systematically converge to
the fixed-node limit. Benchmarks on H2O show that the optimized deep ansatz re-
covers by half an order of magnitude more fixed-node correlation energy compared
to previous variational QMC results.

1 Introduction

The fundamental problem in quantum chemistry is to solve the electronic Schrödinger equation as
accurately as possible at a manageable cost. Variational quantum Monte Carlo (variational QMC) is
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an ab-initio method based on the stochastic evaluation of expectation values that scales favorably
with the system size and provides explicit access to the electronic wavefunction [1]. Although exact
in principle, the accuracy of variational QMC (VMC) strongly depends on the expressiveness of the
trial wavefunction ansatz. Recently, deep QMC has been introduced, which involves a new class of
ansatzes based on deep neural networks (DNNs) [2, 3] and elevates the accuracy of VMC within
quantum chemistry to state-of-the-art levels or beyond.

Currently, there is little understanding why such DNN ansatzes work well and how their individual
components contribute to the approximation of the ground-state wavefunction and energy. Such
understanding, however, is necessary for scaling the accuracy of deep QMC for small molecules to
larger systems. Here, we develop a hierarchy of approximation methods based on the traditional
QMC methodology that enables us to disentangle the contributions of individual components of the
ansatz to the resulting accuracy, and thus identify which of them are amenable to improvement.

An electronic wavefunction ansatz, ψθ(r), is a parametric function that is antisymmetric with respect
to exchange of the input coordinates r = (r1, . . . , rN ) of electrons with same spin, and whose
parameters are optimized via the variational principle of quantum mechanics. A general form for
VMC approaches is the product of an antisymmetric part, usually composed of Slater determinants,
and a symmetric Jastrow factor,

ψθ(r) = eJ(r)︸︷︷︸
symmetric

∑
pcp det[A↑p(r)] det[A↓p(r)]︸ ︷︷ ︸

antisymmetric

(1)

In traditional ansatzes, the Slater determinants are formed from one-electron functions, called
molecular orbitals, Aij = ϕi(rj), which are optimized and fixed prior to the actual VMC simulation
in a Hartree–Fock (HF) calculation. This also fixes the nodal surface of the ansatz—the hyperplane
in the space of r, on which the wavefunction changes sign. The orbitals are formed as a linear
combination of basis functions, which allows arbitrarily accurate orbitals only in the limit of infinitely
many basis function—the complete-basis-set (CBS) limit. This makes accurate calculations costly in
practice. The Jastrow factor, J , introduces correlation between electrons and traditionally involves
power series expansions in one, two, and three-body terms [4], which does not provide sufficient
expressiveness to reach high accuracy. VMC is therefore usually followed by a much more costly
fixed-node diffusion QMC (FN-DMC), a projector method based on evolving electronic configurations
according to the imaginary time Schrödinger equation, which overcomes any deficiencies of the
Jastrow factor, but cannot improve the nodal surface of the antisymmetric part of the ansatz [5].

Related work The ability of neural networks to represent antisymmetric (wave) functions has been
explored theoretically [6, 7]. The treatment of antisymmetry can be avoided in the second-quantized
formalism at the cost of the finite-basis-set error [8]. The formulation of quantum mechanics based on
the imaginary-time Schrödinger equation offers yet another entry point for the use of neural networks
to represent quantum states [9, 10]. On the applied side, deep QMC can be used for many-particle
quantum systems other than electrons [11]. The unsupervised learning based on the variational
principle is not the only way how machine learning can represent electronic structure [12, 13].

Contributions In this work we investigate how neural networks in deep QMC compensate for
incomplete basis sets and reach high accuracy with a deep Jastrow factor without the need for
diffusion QMC. In particular, this paper contains the following contributions:

1. We demonstrate that DNNs can correct the single-particle orbitals of a HF calculation in a
small basis and obtain energies equivalent to the complete-basis-set limit.

2. We show that for two nodeless systems, H2 and He, a deep Jastrow can achieve results
within five significant digits of the exact energy.

3. We conduct an extensive hyperparameter search for the deep Jastrow and find that its
expressiveness can be systematically increased to converge to the fixed-node limit.

4. We combine both the orbital correction and deep Jastrow and obtain state-of-the-art VMC
results for the water molecule.
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2 Methods

Our starting point is PauliNet [2], a DNN ansatz that follows directly eq. 1,

ψθ(r) = eγ(r)+Jθ(r)
∑
p

cp det[ϕ̃↑θ,µpi(r)] det[ϕ̃↓θ,µpi(r)] (2)

ϕ̃θ,µi(r) = ϕµ(ri)f
⊗
θ,µi(r) + f⊕θ,µi(r) (3)

Here, γ is a fixed part of the Jastrow factor that ensures correct asymptotics [14], J is a deep trainable
Jastrow factor, and both f form a deep backflow that turns the one-electron orbitals into general
many-electron functions. Jastrow factor and backflow transformation are obtained from a joint latent
space many-body representation, encoded in the final node features of a convolutional neural network
acting on the molecular graph of electrons and nuclei,

x
(n+1)
i := x

(n)
i + χ

(n,±)
θ

({
x
(n)
j , {|ri − rj |}

})
+ χ

(n,n)
θ

({
Yθ,I , {|ri −RI |}

})
(4)

The neural network is a modification of SchNet [15], where electronic embeddings x(n)
i are iteratively

updated within the interaction phase, while the stationary nuclei are represented by trainable arrays
Yθ,I . Initializing same-spin electrons with identical embeddings and applying permutation invariant
convolutions χθ the many-body representation is equivariant under the exchange of spin-up and
spin-down electrons respectively. We form three restricted variants of the single-determinant form of
PauliNet that enables us to study the individual components separately.

Deep orbital correction Version with no Jastrow factor and a restricted version of the deep
backflow from (3), where f take as an input only the coordinate of the i-th electron, leaves the orbitals
as one-electron functions, but modifies their shape. This is an alternative to the traditional approach,
in which the linear basis-set expansion of ϕµ(ri) is improved by increasing the basis-set size, which
converges only slowly to the complete-basis-set limit.

Deep Jastrow factor PauliNet without the backflow. The deep Jastrow factor Jθ is obtained from
the latent space many-body representation,

Jθ(r) := ηθ
(∑

i x
(L)
i (r)

)
(5)

The full specification of the Jastrow factor involves the configuration of the graph neural network
fixing the dimension of the node features, node messages, distance kernels, and distance features,
depths of all the message-passing subnetworks, and the number of message-passing iterations, as
well as the depth of the Jastrow network ηθ . These together form a set of hyperparameters that affect
the expressiveness of the deep Jastrow.

Mean-field Jastrow factor A restricted version of the deep Jastrow, which is separable in the
individual electrons, and hence does not introduce electron correlation,

Jθ(r) :=
∑
i ζθ(ri) (6)

The mean-field Jastrow is able to optimize the one-electron density of the ansatz.

Training procedure The PauliNet ansatz is optimized by applying the variational principle of
quantum mechanics and following the standard VMC approach of approximating the energy expecta-
tion value

∫
drψ(r)Hψ(r) by Monte Carlo integration. The training then consists of an alternating

scheme of stochastically sampling the probability density associated with the square of the trial wave-
function using a Langevin Monte Carlo approach and updating the model parameters to minimize the
energy expectation value estimated from minibatches of electronic configurations,

L(θ) = Er∼ψ2
θ′

[Hψθ(r)

ψθ(r)

]
(7)
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3 Results

Correcting finite-basis-set error of HF orbitals with a DNN The deep orbital correction can be
employed to improve the orbitals of an imprecise HF@6-31G baseline. For the test systems H2, He,
and Be, energies within 0.1 mH of the extrapolated complete-basis-set limit were achieved (Fig. 1A),
demonstrating that a real-space orbital correction can compensate for the finite-basis-set error.

Exact solutions with deep Jastrow for two-electron systems The wavefunctions of closed-shell
two-electron systems H2 and He have no nodal surface, providing a pure test of any Jastrow factor. Our
deep Jastrow factor recovered 99.97(3)% and 99.98(2)% of the total correlation energy, respectively.
On the dissociation curve of H2, the deep Jastrow outperforms full configuration interaction (FCI)
with the cc-pV5Z basis set for all distances (Fig. 1B).

Systematic approach to the fixed-node limit with deep Jastrow The performance of the Jastrow
factor is evaluated for LiH, a four-electron systems that exhibits more intricate interactions, while

Figure 1: (A) Removing the basis-set error in a HF calculation. The baseline HF calculation
with the small 6-31G basis in combination with the deep orbital correction reaches directly the
complete-basis-set limit, which traditionally requires increasingly larger basis sets from the cc-pVnZ
series. (B) Dissociation curve of the H2 molecule. Total energy and correlation energy with HF,
deep Jastrow and FCI are compared, the latter being indistinguishable from the exact energy in the
upper plot. Exact energy was taken from [16] and FCI results were obtained with PySCF [17] in
the cc-pVQZ basis (orange) and cc-pV5Z basis (green). (C) Approaching FN-DMC accuracy with
deep Jastrow on LiH molecule. Increasingly expressive deep Jastrow factors are trained to approach
the FN-DMC energy of a single-determinant (HF@TZP [18]) trial wavefunction [19]. The most
expressive ansatzes give results within the sampling error of the FN-DMC energy (shaded region
at the top). The dependence on the width of the distance kernel (DNN width) and the number of
interactions L (# interactions) in the Jastrow graph-neural-network is shown. (D) Benchmarking
deep QMC on H2O. All three restricted variants of PauliNet introduced in Methods are compared:
the deep orbital correction (6-311G+DNN), the full deep Jastrow, and the mean-field (MF) Jastrow.
ROOS denotes the Roos-aug-DZ-ANO basis set. VMC and DMC references are taken from [20].
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Table 1: Benchmarking single-determinant (SD) Slater–Jastrow (SJ) ansatzes on H2O.
reference HF VMC (SD-SJ) DMC (SD-SJ) corr. energy [%] basis set

PauliNet -76.009 -76.3923(7) – 91.2(2)∗ 6-311G
PauliNet -76.0612 -76.4096(7) – 96.0(2)∗ 6-311G+DNN
PauliNet -76.0672 -76.4139(5) – 97.2(1)∗ Roos-aug-DZ-ANO
Ref. [20] -76.0672 -76.3773(2) -76.42376(5) 87.01(6) Roos-aug-DZ-ANO
Ref. [21] -76.063 -76.327(5) -76.4219(1) 73.3(1) Roos-aug-DZ-ANO
Ref. [22] -76.0587 -76.327(1) -76.42102(4) 73.5(3) 6–311++G(2d,2p)

∗The fixed-node correlation energy is computed with respect to the reference FN-DMC energy of
[20].

still computationally lightweight, such that the hyperparameter space of the deep ansatz can be
explored exhaustively. Since the single-determinant Slater–Jastrow ansatz possesses an inherent
fixed-node error, we measure the performance of the deep Jastrow factor with respect to the fixed-node
limit estimated from FN-DMC calculations with an identical Slater determinant. We performed a
comprehensive hyperparameter scan that revealed a systematic convergence to the fixed-node limit
with increasing network size (Fig. 1C), indicating that the deep Jastrow factor can be extended
towards completeness.

Application of different levels of theory to the water molecule To investigate how deep orbital
correction and deep Jastrow behave for more complex systems, we evaluated the performance of these
two restricted variants of PauliNet on the water molecule (Fig. 1D). Starting within the mean-field
theory we corrected the HF@6-311g determinant with the deep orbital correction and resolved 90%
of the finite-basis-set error. We then estimated how much of the finite-basis-set error amounts to
the fixed-node error, by applying the mean-field Jastrow, which recovered only about half of the
finite-basis-set error. This suggests that when approaching the complete-basis-set limit, the nodal
surface of the HF solution is altered significantly. Next, we benchmark the deep Jastrow factor
with a HF determinant in the Roos-aug-DZ-ANO basis [23], a common basis set that gives HF
energies at the complete-basis-set limit. We compare to VMC and DMC results from the literature,
achieving 97.2(1)% of the fixed-node correlation energy and surpassing the accuracy of previous
VMC calculations by half an order of magnitude (Table 1). We computed the energies of the deep
Jastrow with a HF@6-311g determinant with and without the orbital correction, demonstrating that
both methods can be combined to reach high accuracy even with a minimal baseline. We recovered
96.0(2)% of the fixed-node correlation energy with respect to the Roos-aug-DZ-ANO basis. The
results further show that the differences between the energies of the mean-field ansatzes match the
differences of the corresponding Slater–Jastrow trial wavefunctions.

Conclusions We have demonstrated that there are no fundamental limitations to the investigated
components of the PauliNet ansatz. With both the deep orbital correction and deep Jastrow, close
to exact energies for the respective level of theory can be obtained, highlighting the expressiveness
of deep QMC. A single ansatz without any problem-specific modifications can compete with state-
of-the-art VMC energies on a variety of systems and can be extended systematically to improve
the accuracy without introducing new components to the architecture. The analysis for the water
molecule shows that the same instances of deep orbital correction and deep Jastrow factor evaluated
on the small systems can be successfully applied to a larger test case and there is evidence that
PauliNet can achieve state-of-the-art energies for molecules with up to a few dozen of electrons [2].
Though the accuracy of a fixed architecture for systems with increasing size is yet to be investigated
in detail, a systematically extensible expressiveness in combination with the generally favourable
scaling of the VMC method (N4) with respect to the number of electrons might constitute the basis
for a scalable QMC algorithm. Albeit the results emphasize the potential of the deep QMC approach,
the major benefit of deep QMC over FN-DMC calculations remains the capability of altering the
nodal surface. The presented analysis paves the way for future investigations on how the full PauliNet
ansatz and other deep QMC approaches improve the nodal surface and overcomes the fixed-node
limitations.
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Broader Impact

Quantum chemistry is essential for the understanding of fundamental properties of molecules and
materials. Deep learning methods to solve the quantum-mechanical equations, such as deep QMC, can
provide a deeper understanding of our world at the nanoscale and provide useful insight and training
data upon which chemicals or materials with desirable properties can be developed or optimized.

As most machine-learning methods, the convergence of deep QMC methods to good approximations
of the electronic Schrödinger equation depend on various choices and hyperparameters. For larger
molecules, for which no ground truth is known with other highly accurate methods, wrong conclusions
could be made when convergence is not reached. Since the deep QMC methods discussed here
are variational, better solutions will always reveal themselves with lower variational energies. This
property should be exploited to test the robustness of predictions before drawing conclusions that
affect real-world decisions.
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