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Summary Results: Periodic Variable Star Classification

 Periodic data is cyclic: it can be wrapped in a closed ring after period folding (phase =t mod period)
e Current RNN/CNN is acyclic, and therefore not optimal for periodic data.
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Periodic permuted MNIST (PP-MNIST) is
our custom dataset which is a periodic
variation of the sequential MNIST task.

(above figure) Simplified illustration of the cyclic-permutation invariant Temporal Convolutional Network (iTCN) and the usual TCN.
Numbers refer to the ordering of the period-folded sequence. Dilated convolutions are represented by arrows where the dilation factor is
indicated to the right of each layer. Gray arrows in the final two layers represent operations which are present only in the iTCN not the TCN.
The classification layer consists of two convolutions of kernel size 1. A comparison of the left and the right shows that cyclic-permutation
iIs achieved by Symmetry padding and a final global mean pooling layer, which are circled in red.

For PP-MNIST, each MNIST image is first
unrolled into a 1D sequence and
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(above figure) Schematic illustration of the effect of polar coordinate convolutions in preserving cyclic-permutation invariance. The input and & 10 NE : ResNet 95.1% TCN 77.4%
output sequences are shown in polar coordinates for iITCN, and in Cartesian coordinates for TCN. The input sequence is a sine curve with ' :
two full oscillations in both cases. In the upper diagram, 1-D feature maps of the periodic input remains periodic; rotational symmetry 0 (above table) Periodic permuted MNIST (PP-MNIST)
Is preserved. These periodic feature maps are also shown in Cartesian coordinates of the lower plots in red dashed lines for comparison. As classification accuracies.
demonstrated by the discrepancy, feature maps are distorted for the first full oscillation in the non-invariant network, which is shown ¢ [radian] ¢ [radian]

In solid black lines.



