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Introduction

Gravitational wave (GW) detection is now common-
place [1] and as the sensitivity of GW detectors im-
proves, we will observe O(100)s of transient GW
events per year [2]. The current methods used to
estimate their source parameters employ optimally
sensitive [3] but computationally costly Bayesian in-
ference approaches [4] where typical analyses have
taken between 6 hours and 5 days [5].
We show for the first time that a conditional vari-
ational autoencoder (CVAE) [6, 7] pre-trained on
binary black hole (BBH) signals can return Bayesian
posterior probability estimates ∼ 6 orders of magni-
tude faster than existing techniques.

Methods Overview

1 Generate 107 training BBH waveforms in
Gaussian noise.

2 Generate 256 test samples with posteriors
produced by 4 benchmark Bayesian sampler
approaches (Dynesty, CPNest, Ptemcee and
Emcee).

3 Train model (VItamin ) to infer posteriors for
7 parameters describing a BBH merger.

4 Hyperparameters chosen through Bayesian
optimisation using Gaussian Processes.

5 Produce 3 figures of merit:
•Corner plots for each test sample superimposing
results from VItamin, Dynesty and Ptemcee.
•P-P plot showing how consistent each approach is
with the truth.
•KL divergence plot showing how similar posteriors are
between different approaches (values closer to zero
indicate high degree of overlap).

Our Model

Figure 1: The configuration of the CVAE neural network. Dur-
ing training (left-hand side), a training set of noisy GW signals
(y) and their corresponding true parameters (x) are given as
input to encoder network qφ, while only y is given to encoder
network rθ1. The KL-divergence is computed between the en-
coder output latent space representations (µq and µr) forming
one component of the total cost function. Samples (zq) from
the qφ latent space representation are generated and passed to
the decoder network rθ2 together with the original input data
y. The output of the decoder (µx) describes a distribution
in the physical parameter space and the cost component L is
computed by evaluating that distribution at the location of the
original input x.

Results

Figure 2:Corner plot showing one and two-dimensional
marginalised posterior distributions on the GW parameters for
one example test dataset using VItamin (red), Dynesty (blue)
and Ptemcee (green).

Figure 3:Distributions of KL-divergence values between poste-
riors produced by different samplers. We show the distribution
of KL-divergences computed between a single benchmark sam-
pler and every other benchmark sampler over all 256 GW test
cases (grey) and KL-divergence distributions between the sin-
gle benchmark sampler and the VItamin outputs (blue, green,
purple, yellow).

Discussion

We have demonstrated that we are able to repro-
duce, to a high degree of accuracy, Bayesian poste-
rior probability distributions generated through ma-
chine learning with the same quality of results as
trusted benchmark analyses used within the LIGO-
Virgo Collaboration.
The significance of our results is most evident in the
orders of magnitude increase in speed over existing
algorithms. Given that the predicted number of fu-
ture detections of binary neutron star (BNS) merg-
ers (∼ 180 [2]) will severely strain the GW commu-
nity’s current computational resources using existing
Bayesian methods, it is imperative that some form
of fast posterior generation be employed.
Given the abundant benefits of this method, we hope
that a variant of this of approach will form the basis
for future GW parameter estimation.
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