
Preserving Properties of Neural Networks by
Perturbative Updates

Andreas Krämer, Jonas Köhler, Frank Noé∗
Freie Universität Berlin

Department of Mathematics and Computer Science
Germany

{andreas.kraemer, jonas.koehler, frank.noe}@fu-berlin.de

Abstract

Deep learning applications in physics usually require neural network architectures
that obey certain symmetries and equivariances. Retaining such mathematical
properties during training with stochastic gradient-based optimizers is a challenging
task. To this end, we present a novel, general approach to preserve network
properties by using parameterized perturbations. In lieu of directly optimizing
the network parameters, the introduced P4 update optimizes perturbations and
merges them into the actual parameters infrequently such that the desired property
is preserved. As a demonstration, we use this concept to preserve invertibility of
linear layers during training. This P4Inv update allows keeping track of inverses and
determinants using rank-one updates. We show how such invertible blocks improve
mode separation when applied to normalizing flows and Boltzmann generators.

1 Introduction

Many deep learning applications depend critically on the neural network parameters having a certain
mathematical structure. As an important example, reversible generative models rely on invertibility
and, in the case of normalizing flows [28], efficient computation of the Jacobian determinant [21].
Other models require (or benefit from) orthogonal linear layers or bounded Lipschitz constants.
Finally, applications in physics often rely on networks that obey the relevant physical invariances and
equivariances (e.g. [13, 2, 12, 11, 23, 24]).

Preserving parameter properties during training can be challenging and many approaches are currently
in use. The most basic way of incorporating constraints is by network design. Many examples could
be listed, like defining convolutional layers to obtain equivariances, constraining network outputs to
certain intervals through bounded activation functions, Householder flows [29] to enforce layer-wise
orthogonality, or coupling layers [5, 6] that enforce tractable inversion through their two-channel
structure. A second approach concerns the optimizers used for training. Optimization routines have
been tailored for example to enforce Lipschitz bounds [30] or efficiently optimize orthogonal linear
layers [3].

The present work introduces a novel algorithmic concept for training neural networks in a property-
preserving manner, see Figure 1. In lieu of directly changing the network parameters, the optimizer
operates on perturbations to these parameters. The actual network parameters are frozen, while a
parameterized perturbation serves as a proxy for optimization. Inputs are passed through the perturbed
network during training. In regular intervals, the perturbed parameters are merged into the actual
network.

∗also at Rice University, Dept. of Chemistry, Houston, TX 77005, USA, and FU Berlin, Dept. of Physics

Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada.



Figure 1: Training of deep neural networks (DNN).
Standard DNN transform inputs x into outputs
y through activation functions and linear layers,
which are tuned by an optimizer. In contrast, P4

training operates on perturbations to the parame-
ters. Those are defined to retain certain network
properties. The perturbed parameters are merged
in regular intervals.

This stepwise reparameterization trick has sev-
eral advantages for optimizing neural networks
under constraints. First, it is usually easier
to generate new sets of parameters that obey
the constraints through suitable perturbations
than from scratch. Therefore, we will refer to
these updates as property-preserving parame-
ter perturbations, or P4 updates. Second, the
merging step can occur infrequently (e.g. every
100 iterations) and perform the heavy-lifting so
that the perturbations occurring in every step
are kept computationally efficient. Specifically,
the constraints need not be rigorously obeyed
in every optimization step. Rather, numerical
inaccuracies can be corrected before merging,
which avoids propagation of errors into the ac-
tual (frozen) network parameters. Third, the
perturbative update does not affect the network
structure or computational cost outside of train-
ing. Finally, the general method can be used to
retain desirable properties of either individual
layers or the deep neural network as a whole.

To demonstrate these benefits in a practical example, we efficiently train invertible linear layers while
keeping track of their inverses and determinants. Previous work [7, 10, 19, 18, 29, 17, 22, 8] has
mostly focused on orthogonal matrices, which can be trivially inverted and have unity determinant.
Only most recently, Gresele et al. [9] presented a first method to optimize general invertible matrices
implicitly using relative gradients, thereby providing greater flexibility and expressivity.

The novel P4Inv scheme provides an alternative approach to train arbitrary invertible matrices
A ∈ GL(n). Notably, it avoids any explicit computations of inverses or determinants. We show
how such invertible blocks can be utilized in normalizing flows by combining them with nonlinear,
bijective activation functions or with coupling layers. The resulting neural networks are validated as
normalizing flows [28, 27, 21] for density estimation and as deep generative models within Boltzmann
generators.

2 Related Work

Constrained matrices can be optimized using Riemannian gradient descent on the manifold [1]. A
reparameterization trick for general Lie groups has been introduced in [7]. For the unitary/orthogonal
group there are multiple more specialized approaches, including using the Cayley transform [10],
Householder Reflections [19, 18, 29], Givens rotations [25, 22] or the exponential map [17, 8].

Lezcano-Casado [15] recently introduced the concept of dynamic trivializations. This method per-
forms training on manifolds by combining ideas from Riemannian gradient descent and trivializations
(parameterizations of the manifold via an unconstrained space). Dynamic trivializations were derived
in the general settings of Riemannian exponential maps and Lie groups. Convergence results were
recently proven in follow-up work [16]. P4 training resembles dynamic trivializations in that both
perform a number of iteration steps in a fixed basis and infrequently lift the optimization problem to
a new basis. In contrast to dynamic trivializations, the P4 method allows leaving the set of feasible
parameters and reenter it in a dedicated merging step. For example, the rank-one updates used in
P4Inv layers do not strictly parameterize GL(n) but instead can access all of Rn×n. This introduces
the need for numerical stabilization, but enables efficient computation of the inverse and determinant
during training.

2



3 P4 Updates: Preserving Properties through Perturbations

3.1 General Concept

A deep neural network is a parameterized function MA : Rn → Rm with a high-dimensional
parameter tensor A. Now, let S define the subset of feasible parameter tensors so that the network
satisfies a certain desirable property. In many situations, generating elements of S from scratch is
much harder than transforming any A ∈ S into other elements A′ ∈ S, i.e. to move within S.

The efficiency of perturbative updates can be leveraged as an incremental approach to retain certain
desirable properties of the network parameters during training. Rather than optimizing the parameter
tensors directly, we instead use a transformation RB : S→ S, which we call a property-preserving
parameter perturbation (P4). A P4 transforms a given parameter tensor A ∈ S into another tensor
with the desired property A′ ∈ S. The P4 itself is also parameterized, by a tensor B.

During training, the network is evaluated using the perturbed parameters Ã = RB(A). The parameter
tensor of the perturbation, B, is trainable via gradient-based stochastic optimizers, while the actual
parameters A are frozen. In regular intervals, every N iterations of the optimizer, the optimized
parameters of the P4, B, are merged into A as follows:

Anew ← RB(A), (1)
Bnew ← B0. (2)

Here, B0 is a tensor that produces the identity, RB0
= idS, so that this update does not modify the

effective (perturbed) parameters of the network Ã and hence enables a steady, iterative transformation.

3.2 P4Inv: Invertible Linear Layers via Rank-One Updates

The P4 algorithm can in principle be applied to properties concerning either individual blocks or the
whole network. Here we train individual invertible linear layers (P4Inv). To this end, we define the
rank-one perturbation

Ru,v(A) : A 7→ A+ uvT .

The inverse and determinant of rank-one perturbed matrices are given through the Sherman-Morrison
formula

(A+ uvT )−1 = A−1 − 1

1 + vTA−1u
A−1uvTA−1 (3)

and the matrix determinant lemma

det(A+ uvT ) = (1 + vTA−1u) det(A). (4)

We define S as the set of invertible matrices, for which we know the inverse and determinant. Due to
the above equations, the rank-one update is a P4 on S. The perturbation is reset by setting u to zero
and reinitializing v from Gaussian noise. The inverse matrix and determinant are stored in the P4

layer alongside A and updated according to equations 3 and 4.

3.3 Numerical Stabilization

The update to the inverse and determinant can become ill-conditioned if the denominator in equation
3 is close to zero. To tame potential numerical issues, the following additional strategies are applied.
Firstly, merges are skipped whenever the determinant update falls out of predefined bounds. This
allows the optimization to continue without propagating numerical errors into the actual weight
matrix A. Note that numerical errors in the perturbed parameters Ã are instantaneous and vanish
when the optimization leaves the ill-conditioned regime. Secondly, to maintain a small error of the
inverse throughout training, the inverse is corrected after every 50-th merging step by one iteration
of an iterative matrix inversion [26]. This operation is O(n3), yet highly parallel so that it did not
significantly affect the total training time in the experiments considered below. The reasoning behind
this correction is to equip the algorithm with a means to recover from any numerical inaccuracies that
may propagate into the stored inverse via merge steps (equation 3). Whether such a correction is in
fact needed depends on various factors, including the determinant bounds for accepting merge steps,
the total number of merges, the floating point precision, and the problem at hand.

3



4 Experiments

4.1 2D Distributions

To access the effectiveness of P4Inv layers in deep networks, density estimation of common 2D toy
distributions was performed by stacking 200 2×2 P4Inv layers with bijective activation functions
(Bent identities and their inverses). For comparison, a RealNVP (RNVP) [6] normalizing flow was
constructed with the same number of tunable parameters as the P4Inv flow.

Figure 2: Density estimation for two-dimensional distribu-
tions from RealNVP (RNVP) and P4Inv networks with simi-
lar numbers of tunable parameters.

Figure 3: Alanine dipeptide with
backbone torsions ϕ and ψ.

Figure 2 compares the generated distributions from the two models. The samples from the P4Inv
model aligned favorably with the ground truth. In contrast to RNVP, P4Inv cleanly separated the
modes. This underlines the favorable mixing achieved by general linear layers with elementwise
nonlinear activations.

4.2 Boltzmann Generators of Alanine Dipeptide

Boltzmann generators [20] combine normalizing flows with statistical mechanics in order to draw
direct samples from a given target density, e.g. given by a many-body physics system. This setup
is ideally suited to assess the inversion of normalizing flows as its highly sensitive potential energy
provides a quantitative measure for the sample quality. In molecular examples, specifically, the target
densities are multimodal and contain singularities. Therefore, the generation of the 66-dimensional
alanine dipeptide conformations (test case adopted from [4]) is a highly nontrivial test for generative
models, see Figure 3.

The training efficiency and expressiveness of Boltzmann Generators were compared between pure
RNVP baseline models as used in [20] and models augmented by P4Inv. Concretely, P4Inv layers
were inserted between any RNVP layers replacing the usual swapping of input channels. Both flows
consisted of 50 RNVP layers with 735,050 RNVP parameters. P4Inv blocks only added 9,000 tunable
parameters and neglibile additional cost. Both models were trained via density estimation (40000
steps on batches of 256 with a 10−3 learning rate) and subsequent energy-based training (2000 steps,
batch size 4000, learning rate 10−5).

Figure 4 (left) shows the energy statistics of generated samples. To demonstrate the sensitivity of the
potential energy, the training data was first perturbed by 0.004 nm (less than 1% of the total length of
the molecule) and energies were evaluated for the perturbed data set. As a consequence, the mean of
the potential energy distribution increased by 13 kBT .

In comparison, the Boltzmann generators produced much more accurate samples. The energy
distributions from RNVP and P4Inv blocks were only shifted upward by ≈ 2.6 kBT and rarely
generated samples with infeasibly large energies. The performance of both models was comparable
with slight advantages for models with P4Inv swaps. This shows that the P4Inv inverses remained
intact during training. Finally, Figure 4 (right) shows the joint distribution of the two backbone
torsions. Both Boltzmann generators reproduced the most important local minima of the potential
energy. As in the 2D toy problems, the P4Inv layers provided a cleaner separation of modes.

4



Figure 4: Left: Energy distributions of generated samples; the second (orange) violin plot shows
energies when the training data was perturbed by normal distributed random noise with 0.004 nm
standard deviation. The low-energy fraction for each column denotes the fraction of samples that
had potential energy u lower than the maximum energy from the training set (≈ 20 kBT ). Right:
Joint marginal distribution of the backbone torsions ϕ and ψ: training data compared to samples from
Boltzmann generators with and without P4Inv swaps (denoted P4Inv and RNVP, respectively).

5 Discussion

We have introduced P4 updates, a novel algorithmic concept to preserve properties of neural networks
using parameterized perturbations. As an example, invertible linear layers (P4Inv) were trained with
stochastic optimizers while efficiently keeping track of their inverses and determinants. A crucial
aspect of the P 4 method is its decoupled merging step, which allows stable and efficient updates.
As a consequence, the invertible linear P4Inv layers can approximate any well-conditioned regular
matrix.

The efficiency of P4Inv training is studied in [14]. There, optimization of linear toy problems
required a similar number of iterations as standard training of the full matrix despite the much smaller
number of trainable parameters (2n instead of n2). In practical nonlinear situations, the convergence
rate became slower than for standard training when the optimizer approached an optimum. On the
contrary, P4Inv layers provided a two orders-of-magnitude speedup of the inverse pass over alternative
methods. Consequently, these layers are most useful when evaluating the loss function requires both
the forward and inverse pass of the network.

Since perturbation theorems like the rank-one update exist for many classes of linear and nonlinear
functions, we believe that the P4 concept presents an efficient and widely applicable way of preserving
desirable network properties during training.

Broader Impact

Machine learning applications in the physical sciences critically depend on neural networks that
encode the relevant invariances and equivariances. To this end, the present work develops a new
approach to retain mathematical properties of models during training. We demonstrate the method
for invertibility of linear layers. Applications to other properties are straightforward if suitable
perturbations can be defined. Since perturbation theorems are ubiquitous in both mathematics and
physics, we expect that the P4 approach will be useful in many other situations.

Acknowledgements

The authors acknowledge funding by the European Commission (ERC CoG 772230), German
Ministry for Education and Research (Berlin Institute for the Foundations of Learning and Data
BIFOLD), Deutsche Forschungsgemeinschaft (SFB1114/A04 and GRK DAEDALUS), and The
Berlin Mathematics research center Math+ (projects AA1-6 and EF2-1).

5



References
[1] P. A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix manifolds. Princeton

University Press, 2009.

[2] Denis Boyda, Gurtej Kanwar, Sébastien Racanière, Danilo Jimenez Rezende, Michael S Albergo, Kyle
Cranmer, Daniel C Hackett, and Phiala E Shanahan. Sampling using su(n) gauge equivariant flows. arXiv
preprint arXiv:2008.05456, 2020.

[3] Krzysztof Choromanski, David Cheikhi, Jared Davis, Valerii Likhosherstov, Achille Nazaret, Achraf Ba-
hamou, Xingyou Song, Mrugank Akarte, Jack Parker-Holder, Jacob Bergquist, Yuan Gao, Aldo Pacchiano,
Tamas Sarlos, Adrian Weller, and Vikas Sindhwani. Stochastic flows and geometric optimization on the
orthogonal group. In 37th International Conference on Machine Learning (ICML 2020), 2020.

[4] Manuel Dibak, Leon Klein, and Frank Noé. Temperature-steerable flows. Machine Learning and the
Physical Sciences, Workshop at the 34th Conference on Neural Information Processing Systems (NeurIPS),
2020.

[5] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components estimation.
arXiv preprint arXiv:1410.8516, 2014.

[6] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016.

[7] Luca Falorsi, Pim de Haan, Tim R. Davidson, and Patrick Forré. Reparameterizing distributions on lie
groups. In Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics
(AISTATS) 2019, volume 89 of Proceedings of Machine Learning Research, pages 3244–3253. PMLR,
2019.

[8] Adam Golinski, Mario Lezcano-Casado, and Tom Rainforth. Improving normalizing flows via better
orthogonal parameterizations. In ICML Workshop on Invertible Neural Networks and Normalizing Flows,
2019.

[9] Luigi Gresele, Giancarlo Fissore, Adrián Javaloy, Bernhard Schölkopf, and Aapo Hyvärinen. Relative
gradient optimization of the jacobian term in unsupervised deep learning. In 34th Conference on Neural
Information Processing Systems (NeurIPS 2020), 2020.

[10] Kyle Helfrich, Devin Willmott, and Qiang Ye. Orthogonal recurrent neural networks with scaled cayley
transform. In International Conference on Machine Learning, pages 1969–1978. PMLR, 2018.

[11] Jan Hermann, Zeno Schätzle, and Frank Noé. Deep-neural-network solution of the electronic Schrödinger
equation. Nat. Chem., 12(10):891–897, 2020.

[12] Gurtej Kanwar, Michael S. Albergo, Denis Boyda, Kyle Cranmer, Daniel C. Hackett, Sébastien Racanière,
Danilo Jimenez Rezende, and Phiala E. Shanahan. Equivariant flow-based sampling for lattice gauge
theory. Phys. Rev. Lett., 125:121601, 2020.

[13] Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: exact likelihood generative learning for
symmetric densities. arXiv preprint arXiv:2006.02425, 2020.

[14] Andreas Krämer, Jonas Köhler, and Frank Noé. Training invertible linear layers through rank-one
perturbations. arXiv preprint arXiv:2010.07033, 2020.

[15] Mario Lezcano-Casado. Trivializations for gradient-based optimization on manifolds. In 33rd Conference
on Neural Information Processing Systems (NeurIPS 2019), volume 32, pages 9157–9168, 2019.

[16] Mario Lezcano-Casado. Curvature-dependant global convergence rates for optimization on manifolds of
bounded geometry. arXiv preprint arXiv:2008.02517, 2020.

[17] Mario Lezcano-Casado and David Martínez-Rubio. Cheap orthogonal constraints in neural networks: A
simple parametrization of the orthogonal and unitary group. In Proceedings of the 36th International
Conference on Machine Learning, volume 97, pages 3794–3803. PMLR, 2019.

[18] Chenlin Meng, Yang Song, Jiaming Song, and Stefano Ermon. Gaussianization flows. arXiv preprint
arXiv:2003.01941, 2020.

[19] Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. Efficient orthogonal parametri-
sation of recurrent neural networks using householder reflections. In International Conference on Machine
Learning, pages 2401–2409. PMLR, 2017.

6



[20] Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling equilibrium states
of many-body systems with deep learning. Science, 365(6457):eaaw1147, 2019.

[21] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshmi-
narayanan. Normalizing flows for probabilistic modeling and inference. arXiv preprint arXiv:1912.02762,
2019.

[22] Tomas Pevny, Vasek Smidl, Martin Trapp, Ondrej Polacek, and Tomas Oberhuber. Sum-product-transform
networks: Exploiting symmetries using invertible transformations. arXiv preprint arXiv:2005.01297, 2020.

[23] David Pfau, James S. Spencer, Alexander G. D. G. Matthews, and W. M. C. Foulkes. Ab initio solution of
the many-electron schrödinger equation with deep neural networks. Phys. Rev. Research, 2:033429, 2020.

[24] Danilo Jimenez Rezende, Sébastien Racanière, Irina Higgins, and Peter Toth. Equivariant hamiltonian
flows. arXiv preprint arXiv:1909.13739, 2019.

[25] Uri Shalit and Gal Chechik. Coordinate-descent for learning orthogonal matrices through Givens rotations.
In 31st International Conference on Machine Learning (ICML 2014), volume 1, pages 833–845, 2014.

[26] Fazlollah Soleymani. A fast convergent iterative solver for approximate inverse of matrices. Numerical
Linear Algebra with Applications, 21(3):439–452, 2014.

[27] Esteban G Tabak and Cristina V Turner. A family of nonparametric density estimation algorithms.
Communications on Pure and Applied Mathematics, 66(2):145–164, 2013.

[28] Esteban G Tabak, Eric Vanden-Eijnden, et al. Density estimation by dual ascent of the log-likelihood.
Communications in Mathematical Sciences, 8(1):217–233, 2010.

[29] Jakub M Tomczak and Max Welling. Improving variational auto-encoders using householder flow. arXiv
preprint arXiv:1611.09630, 2016.

[30] Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generalizability of deep
learning, 2017.

7


	Introduction
	Related Work
	P4 Updates: Preserving Properties through Perturbations
	General Concept
	P4Inv: Invertible Linear Layers via Rank-One Updates
	Numerical Stabilization

	Experiments
	2D Distributions
	Boltzmann Generators of Alanine Dipeptide

	Discussion

