
Adapting Multi-Objective Bayesian Optimization for
Online Particle Accelerator Tuning

Ryan Roussel
Department of Physics
University of Chicago

Chicago, IL 60637
rroussel@uchicago.edu

Adi Hanuka
SLAC National Laboratory

Menlo Park, CA, 94025
adiha@slac.stanford.edu

Auralee Edelen
SLAC National Laboratory

Menlo Park, CA, 94025
edelen@slac.stanford.edu

Abstract

Particle accelerators require constant tuning during operation to meet goals for
beam quality, total charge and particle energy for use in a wide variety of physics,
chemistry and biology experiments. Maximizing the performance of an accelera-
tor facility often necessitates multi-objective optimization, where operators must
balance trade-offs between objectives, often using limited, real-time, temporally
expensive beam observations. Unfortunately parallelized methods typically used
to solve multi-objective problems don’t have sufficient sample efficiency to be
used practically during accelerator operation. This is due, in part, because fitness
evaluation of a given input must be done serially. Here, we introduce modifications
to a multi-objective Bayesian optimization scheme for use in practical particle
accelerator control algorithms, by including optimization constraints, objective
preferences and localized parameter tuning.

1 Introduction

Optimizing particle accelerator parameters during operation (i.e. "online tuning") is a tedious but often
necessary part of any accelerator facility’s daily operation. Due to their large number of components
and variability of external factors, such as vibrations or temperature changes, accelerators must be
continuously re-tuned and optimized to meet various beam quality objectives. This often requires
hours of tuning by experienced operators to maintain accelerator performance, which in turn, reduces
the overall scientific output as experimenters using the facility do not have access to the beam during
these periods.

Accelerator optimization can be framed as a multi-objective optimization problem, as several aspects
of the beam must be optimized simultaneously. However, parallelized methods previously used to
solve multi-objective problems such as genetic [1] or swarm [2] optimization are not suitable for
practical online optimization where the fitness of each individual can only be evaluated in serial.
Since parallelized multiple objective algorithms require thousands of observations to effectively find
the Pareto front, take too much time to converge for use in online tuning. On top of this, accelerator
measurements often take significant time and resources to preform, further increasing time required
for optimization.

We use the recent development of Multi-Objective Bayesian Optimization (MOBO) [3] to enable
serialized optimization of accelerators when solving multi-objective problems. Optimization of
multi-objective problems entails finding the Pareto front P , which is a set of points in objective space
that optimally balances the trade-offs between each objective, as optimizing one objective often comes
at the expense of another. In the case described here we wish to minimize each objective relative
to a reference point r which represents the largest expected values of each objective. The figure
of merit for a Pareto front is its hypervolume indicator H, which is the volume in N -dimensional

Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada.



Figure 1: Cartoon of the AWA photoinjector and the first linac cavity. Input variables and output
beam parameters used in optimization are labeled. Reproduced from [6].

sub-domain defined by the Pareto front set and the reference point. As detailed in [3], Gaussian
processes [4] corresponding to each objective can be used to predict which points in input space are
likely to optimally increase the hypervolume until convergence to the true hypervolume is reached.
This serialized optimization strategy efficiently samples the input space to reduce the number of
observations needed to find the Pareto front, enabling it to be used in online accelerator optimization.
In this paper, we demonstrate how making slight modifications the hypervolume improvement
acquisition function enables us to solve unique issues that make accelerator optimization difficult,
including specifying optimization preferences, objective constraints and smooth exploration of input
parameter space.

2 Adapting MOBO to Particle Accelerator Problems

A diagram showing the problem we wish to solve is shown in Figure 1. The Argonne Wakefield
Accelerator (AWA) at Argonne National Lab generates electron bunches by shining a laser pulse onto
a metallic cathode inside a photo-injector [5] and then using radio frequency fields to accelerate the
electron bunch to the right. We wish to minimize 7 output beam parameters of the electron bunch
at the end of this portion of the accelerator. These parameters (colored blue in Figure 1) include
the bunch size in three dimensions σx, σy, σx, the phase space area of electron trajectories in three
dimensions εx, εy, εz and the energy spread of the electrons δE. These beam attributes are influenced
by several input variables (colored red in Figure 1). These include the magnetic field strength of a
pair of solenoids (K1,K2) and the amplitude (G1, G2) and phase (φ1, φ2) of accelerating electric
fields.

Before using this algorithm to control the physical accelerator, we developed and tested it on a
simulated model. Normally, a full 3D physics simulation is used to predict beam attributes from a
given set of parameters, however recent progress in using neural network based surrogate models
of particle accelerators [6] allowed us to speed up algorithm development significantly by using a
neural network surrogate model that executed roughly O(106) faster than conventional 3D physics
simulations.

We base our multi-objective optimization strategy on the hypervolume based acquisition function
developed in [3]. An independent Gaussian process regressor is used to model each beam attribute
(7 in total). Since the dimensionality of objective space is very large, we used the upper confidence
bound hypervolume improvement acquisition function (UCB-HVI) [7], which allows the use of
efficient exact [8] or approximate [9] hypervolume calculation algorithms to quickly predict the
hypervolume improvement.

2.1 Adding optimization preferences and constraints

One advantage of the MOBO approach is the ability to specify a preference towards optimizing
certain objectives over others during optimization by explicitly constraining objective space. Instead
of a single reference point, this preferential algorithm specifies both a maximum and minimum
reference point in objective space and calculates the truncated hypervolume improvement [10]. If
we specify the truncated domain T = [A,B] defined by the minimum objective point A and the
maximum objective point B the truncated version of the UCB-HVI is given by

αTUHV I(µ(x), σ(x),P, β,A,B) :=

{
HVI(P,y(x),B) y ∈ T
0 otherwise

(1)

2



where y(x) = µ(x)−
√
βσ(x) where µ(x), σ(x) are the predicted mean and standard deviation from

each objective Gaussian process at an input point x and β specifies the trade-off between exploration
(β � 1) and exploitation (β � 1). The hypervolume improvement HVI(P,y,B) measures the
hypervolume of adding a point y to the current Pareto front P , subtracted by the hypervolume of the
current Pareto front, both with the reference point B.

Alternatively, we can specify an inequality constraint that needs to be satisfied during optimization.
We create another GP surrogate model that predicts the probability of a constraint being satisfied and
simply multiply the hypervolume improvement acquisition function by this probability [11]. The
probability of a point x satisfying the constraint condition g(x) ≤ h, modeled by a Gaussian process
trained on a dataset Dg is given by

Pg(x) := Pr[g(x) ≤ h] =

∫ h

−∞
p(g(x)|Dg)dg(x) (2)

which is simply the univariate Gaussian cumulative distribution function. Now we can define a
new constrained version of the acquisition function α̂(x) as α̂(x) = α(x)Pg(x). As a result, the
acquisition function will be negatively biased anywhere the model predicts that the constraint is likely
to be violated.

2.2 Smooth input space exploration

One unique aspect of accelerator optimization is the cost associated with exploring the input parameter
space. Changes to input parameters (magnetic field settings, RF phase settings, etc.) often takes a
nontrivial amount of time to fully execute in practice, often scaling proportionally to the magnitude
of the change. Thus, it is desirable to bias the acquisition function to smoothly explore input space,
while still increasing the Pareto front hypervolume.

Achieving this is done by biasing the acquisition function towards prioritizing nearby points relative
to the most recent observation location in input space. We multiply our original acquisition function
α(x) by a multivariate Gaussian distribution, centered at the most recently observed point in input
space x0, and a precision matrix Σ

α̃(x,x0) = α(x) exp
[
− 1

2
(x− x0)TΣ(x− x0)

]
. (3)

We name the modified acquisition function α̃(x,x0), smooth UCB-HVI (S-UCB-HVI). The precision
matrix specifies the cost associated with changing each input variable, where larger elements corre-
spond to a harsher penalty. This allows travel in each parameter direction to cost a variable amount,
which is often the case in accelerator operations when different classes of beamline parameters
are modified. With an appropriately chosen cost matrix Σ, the acquisition function still allows the
optimizer to make large jumps in input space if the unmodified acquisition function α(x) is large
enough. This maintains the optimizers’ ability to escape localized extrema and explore regions of
unobserved input space, while significantly reducing the frequency and amplitude of large jumps.

3 Photo-injector Optimization Results

3.1 Pareto front convergence

We assume that the functional form of each objective is smooth, thus we choose the standard radial
basis function kernel with an anisotropic precision matrix Σ = diag(l)−1. Initially, a randomly
generated Latin-Hypercube distribution of 20 input points with corresponding objective observations
is used to train each corresponding GP. Hyperparameter training is done by maximizing the log
marginal likelihood [4]. We use the UCB-HVI acquisition function with β = 0.01 to do multi-
objective Bayesian optimization with 300 sequential observations. The UCB-HVI is maximized using
a particle swarm optimization algorithm implemented in the PyGMO package [12] with 64 individuals
and 10 generations. In order to account for new information gained from the optimization, we retrain
the hyperparameters with the accumulated dataset every 10 observations. The resulting hypervolume
as a function of iteration number is shown in Figure 2f. We observe that this algorithm converges to a
Pareto front, that matches results from previous experiments [6], in about 300 iterations.

3



Figure 2: Left: Energy spread (dE) and horizontal beam emittance (εx) objective space after 200
observations with MOBO. (a) MOBO with no constraints. (b) MOBO with an optimization preference
of dE < 0.52 MeV. (c) MOBO with an inequality constraint of dE < 0.52 MeV. The dotted line in
(b) and (c) denotes the preference/constraint limit (0.52 MeV). Right: Comparison between normal
UCB-HVI and localized UCB-HVI acquisition functions when used to perform optimization of
the AWA photoinjector. Solenoid 1 strength parameter over 300 observations when normal (d) and
localized UCB-HVI (e) is used. (f) Average Pareto front hypervolume of 10 optimization runs
with random initialization sets. Shading denotes one sigma variance. Smoother traversal through
parameter space, as seen in (e) is particularly important for practical online use in accelerators.

3.2 Constrained optimization

We now investigate the effect of preferential or constrained treatment of an objective on the optimiza-
tion result. First, we consider a case where want to optimize the same objectives as the previous
problem but wish to only find solutions where the energy spread satisfies dE < 0.52 mega-electron-
volts (MeV). To judge how this modification effects the optimization we compare the observed points
in the projected 2D dE vs. εx objective space after 200 iterations in Figure 2. When preferential
treatment is added to the algorithm (Figure 2(b)), the algorithm observes almost no points that violate
this preference. Furthermore, since the volume of the objective space is significantly reduced, the
optimizer finds a higher-quality Pareto front in the same number of steps as the unconstrained case.

Second, we consider a case where we wish to relax this constraint, removing the energy spread
minimization objective and replacing it with the inequality constraint dE < 0.52 MeV. The resulting
observation distribution appears significantly different in this case (Figure 2(c)) as the optimizer
allows the energy spread to increase up to the constraint value in order to optimize the six remaining
objectives. In this case, more observations are made that violate the constraint than in the previous
experiment, which is necessary to accurately model the constraining function near the boundary.

3.3 Smooth optimization

Finally, we demonstrate the use of S-UCB-HVI on optimizing the AWA problem. We start with the
same set of 10 initial sets of observations as in Section 3.1 with the same hyperparameter training
schedule. However, this time we run MOBO optimization using the S-UCB-HVI acquisition function,
with a isotropic covariance matrix (see Eq. 3) Σ = 0.25I in normalized input space.

Results from these optimization runs are presented in Figure 2. We observe that during optimization,
when the UCB-HVI acquisition function is used, the solenoid strength parameter is wildly varied
to increase the hypervolume as much as possible. However, when a smoothing term is added to
the acquisition function, the frequency and amplitude of large jumps in parameter space are both
decreased. While not shown here, this change in behavior is mirrored in each of the other 5 variables.
Furthermore, the use of S-UCB-HVI acquisition function over the generic UCB-HVI function

4



only minimally reduces the overall speed at which the method finds maximizes the Pareto front
hypervolume (Figure 2f).

4 Conclusion

In this paper we have demonstrated that the MOBO framework can be used to solve multi-objective
optimization problems in accelerator physics. This method efficiently finds the Pareto front in a
serialized manner, which makes multi-objective online optimization of accelerators viable for the first
time. In the simple photo-injector optimization case shown here our algorithm reached reasonable
convergence to the Pareto front in approximately 300 iterations, corresponding to about 50 minutes
of online optimization time (assuming 10 seconds for each measurement), which is similar to tuning
times needed today to optimize a similar accelerator towards a single objective. The framework also
allows the operator to easily specify objective preferences and constraints. Finally, we demonstrated
that adding a smoothing term to the acquisition function effectively reduces the number and frequency
of large jumps in input space. These modifications to the MOBO optimization framework are
especially important for practical use in accelerator facilities, where operational time is at a premium.

5 Broader Impact

The authors do not believe that this work has any ethical or future societal impacts.

6 Acknowledgements

This work was supported by the U.S. National Science Foundation under Award No. PHY-1549132,
the Center for Bright Beams.

References
[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic

algorithm: NSGA-II. 6(2):182–197. Conference Name: IEEE Transactions on Evolutionary
Computation.

[2] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of ICNN’95 -
International Conference on Neural Networks, volume 4, pages 1942–1948 vol.4.

[3] Michael Emmerich, Kaifeng Yang, André Deutz, Hao Wang, and Carlos M. Fonseca. A
multicriteria generalization of bayesian global optimization. In Panos M. Pardalos, Anatoly
Zhigljavsky, and Julius Žilinskas, editors, Advances in Stochastic and Deterministic Global
Optimization, Springer Optimization and Its Applications, pages 229–242. Springer International
Publishing.

[4] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine
learning. Adaptive computation and machine learning. MIT Press. OCLC: ocm61285753.

[5] M E Conde, S P Antipov, D S Doran, W Gai, Q Gao, and G Ha. Research program and recent
results at the argonne wakefield accelerator facility (AWA). page 3.

[6] Auralee Edelen, Nicole Neveu, Yannick Huber, Mattias Frey, Christopher Mayes, and Andreas
Adelmann. Machine learning for orders of magnitude speedup in multi-objective optimization
of particle accelerator systems.

[7] M.T.M. Emmerich, K.C. Giannakoglou, and B. Naujoks. Single- and multiobjective evolutionary
optimization assisted by gaussian random field metamodels. 10(4):421–439. Conference Name:
IEEE Transactions on Evolutionary Computation.

[8] Lyndon While, Lucas Bradstreet, and Luigi Barone. A fast way of calculating exact hypervol-
umes. 16(1):86–95. Conference Name: IEEE Transactions on Evolutionary Computation.

[9] Weisen Tang, Hai-Lin Liu, Lei Chen, Kay Chen Tan, and Yiu-ming Cheung. Fast hypervolume
approximation scheme based on a segmentation strategy. 509:320–342.

5



[10] Kaifeng Yang, Andre Deutz, Zhiwei Yang, Thomas Back, and Michael Emmerich. Truncated
expected hypervolume improvement: Exact computation and application. In 2016 IEEE
Congress on Evolutionary Computation (CEC), pages 4350–4357.

[11] Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian Q Weinberger, and John P Cun-
ningham. Bayesian optimization with inequality constraints. In ICML, volume 2014, pages
937–945.

[12] Francesco Biscani and Dario Izzo. A parallel global multiobjective framework for optimization:
pagmo. 5(53):2338.

6


	Introduction
	Adapting MOBO to Particle Accelerator Problems
	Adding optimization preferences and constraints
	Smooth input space exploration

	Photo-injector Optimization Results
	Pareto front convergence
	Constrained optimization
	Smooth optimization

	 Conclusion
	Broader Impact
	Acknowledgements

