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Abstract

Simulation-based inference has become key in a number of application domains
from physical sciences and beyond. While the Bayesian framework lends itself well
to inverse problems, it often happens that involved likelihoods are intractable or
very cumbersome to evaluate, so that likelihood-free methods such as Approximate
Bayesian Computation (ABC) are appealed to. However, ABC methods can also
be quite simulation-consuming, and efforts have recently been paid to alleviate
associated costs by means of surrogating the considered dissimilarity across pa-
rameter space, yet typically under strong distributional assumptions and/or with
space exploration strategies that can prematurely exclude parameter regions. In
this work we propose a non-parametric approach that allows speeding-up ABC via
probabilistic prediction of the dissimilarity distribution field. Our proposed spatial
logistic Gaussian Process ABC approach is finally illustrated based on a test case
application in contaminant localization under uncertain geology.

1 Introduction

In physical sciences, complex simulation models are extensively used as they allow accurate mod-
elling of complex phenomena [6, 7, 15, 23]. However, such models are often difficult to use in
Bayesian inference as their associated likelihood function is either too expensive to evaluate or too
complicated to derive.
The framework of Likelihood Free Inference (LFI) has been developed to address this issue. Approxi-
mate Bayesian Computation (ABC) methods [1, 13] have arguably become the most popular class of
approaches to perform LFI in the context of simulation models. ABC aims at identifying parameters
leading to simulation results similar to observed data, by-passing in turn the need to evaluate the
likelihood function.
One of the main current challenges in this field is the fact that ABC techniques generally require a
large number of simulations to deliver precise inference, which can be computationally expensive.
In this work, we propose a non-parametric probabilistic model of the conditional distributions of
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misfit between simulations and observed data, given the simulation parameters. Our approach allows
modelling density-valued fields with complex dependencies of the parameter space and delivers
probabilistic predictions of the distribution field. The considered approach delivers a generative
model for the misfits, which in turn, yields probabilistic prediction of the ABC posterior.
We introduce the general framework and idea of ABC methods in the first section of this document.
Then, we present the Spatial Logistic Gaussian Process and discuss its potential for LFI in Section
3. Finally, results on an application test case pertaining to contaminant localization under uncertain
geology are presented in Section 4.

2 Bayesian inference and Approximate Bayesian Computation

2.1 The classical framework of Bayesian inference

Let us consider a parametric statistical model Fθ, θ ∈ D and some observed data yobs assumed to
stem from this model, with a value of θ that is unknown and to be estimated. In Bayesian inference,
the parameter θ is treated as random, and a prior distribution is assumed for it. Assuming further that
the prior distribution possesses a density π[θ] (with dominating measure being typically the Lebesgue
measure in finite-dimensional cases), the likelihood function can be written as θ 7→ π[yobs|θ], and the
posterior distribution of θ knowing yobs can be expressed in virtue of Bayes theorem as

π[θ|yobs] ∝ π[yobs|θ]π[θ] (1)

However, often the likelihood function is intractable or prohibitively costly to evaluate. Approximate
Bayesian Computation is a popular framework to address this issue.

2.2 Approximate Bayesian Computation

In the ABC framework, we assume that, as often in physical systems, it is possible to simulate the
response associated to any given instance of θ. It is also assumed that we have access to a measure of
dissimilarity ∆ between responses, allowing us to compare simulated versus observed data.
Denoting by yθ a random response with input θ and viewing θ as random with prior density π, the
essence of ABC is to approximate the posterior as follows:

π[θ|yobs] ≈ π[θ|∆(yobs, yθ) ≤ ε], (2)

where ε > 0 is a prescribed “small enough” threshold. The most basic ABC algorithm, the ABC
rejection sampler [18, 20], can be summarized by the following pseudo code:

input :Prior distribution π[θ], simulation model π[yθ|θ], threshold ε, number of steps T
for i← 1 to T do

Draw θi from π[θ]
Simulate yi from Fθi
Accept θi if ∆(yobs, yi) ≤ ε

end
output :Parameters θi that have been accepted

Algorithm 1: ABC rejection sampler

The main issue that we are tackling in this work is the computational efficiency of this approach.
Indeed, if the prior is substantially broader than the posterior, as is common in practice, most
simulations are rejected and the ABC rejection sampler becomes very inefficient.
To address this problem, several approaches aiming at more efficient ABC posterior sampling have
been developed. Among these techniques, one can cite Markov chain Monte Carlo ABC [14],
sequential and population Monte Carlo ABC [1, 2, 3, 4, 12, 19, 22]. The two latter consist in
replacing draws of θ from the prior with draws from an adapted proposal density. Another class
of methods consist in Synthetic Likelihood (SL) methods [17, 24], where the misfit distribution is
assumed to stem from a parametric family (usually Gaussian).
The approach we present here is similar to the one used is SL methods, with the main difference
being that we model the misfit distributions non-parametrically. Therefore, we do not require strong
distributional hypotheses on misfits.
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3 A non-parametric model for density field estimation

3.1 The Spatial Logistic Gaussian Process model

We appeal here to a flexible non-parametric Bayesian approach for density-valued field estimation
that allows modelling densities π(·|θ) on a response space I which variations with respect to θ do not
only concern specific quantities such as mean and variance, but also allow other distribution features
to evolve over parameter space, including for instance their shape, their uni- versus multi-modal
nature, etc. The considered approach builds upon a class of models, coined Spatial Logistic Gaussian
Process (SLGP), that generalizes logistic Gaussian process models used in density estimation [11, 21]
to the case of density field estimation.
Considering a deterministic function µ : (D × I 7→ R) and a covariance function k on (D ×
I) × (D × I) such that for W ∼ GP(µ, k) (where GP denotes a Gaussian Process) and all
θ ∈ D,

∫
I eW (θ,u) du < ∞ a.s., one defines a field of conditional probability densities based on a

SLGP via:

p(t|θ) = eW (θ,t)∫
I eW (θ,u) du

∀(θ, t) ∈ D × I (3)

The stochastic process {p(·|θ), θ ∈ D} takes values in the space of densities (D → I) and is used
here to induce a prior over this space.
This prior allows performing Bayesian non-parametric estimation of fields of probability density
functions. The considered models deliver probabilistic predictions of distribution fields, allowing for
instance to perform (approximate) posterior simulations of probability density functions as well as
jointly predicting multiple moments or other functionals of target distributions.

3.2 Leveraging the SLGP for likelihood free inference

We consider the standard ABC framework, where the posterior is approximated with the ABC
posterior recalled in Equation 2. We assume that the available data consists in n couples of pa-
rameters and misfits, noted {(θ1,∆(yobs, y1)), ..., (θn,∆(yobs, yn))}. Using these data, we estimate
π[∆(yobs, yθ)|θ] relying on the probability density field model defined by Equation 3.
Considering that for a given ε > 0 and a given prior π, this ABC posterior can be written as:

π[θ|∆(yobs, yθ) ≤ ε] ∝ π[∆(yobs, yθ) ≤ ε|θ]π[θ], (4)

we use our estimation of the misfit distribution field to deliver a probabilistic surrogate to this ABC
posterior by replacing π[∆(yobs, yθ) ≤ ε|θ] in the latter equation by its estimated value.
Some of the main strengths of our approach, compared to classical ABC, is that our model can
be trained on data sets where the parameters θi do not stem from the prior, and we incorporate
information from all the simulations, not just the best ones.

4 An application in geosciences

To demonstrate applicability of this approach, we consider a one dimensional contaminant
problem. We want to localize the depth of a contaminant source propagating into a saturated
aquifer when the geological structure is unknown. Indeed, characterization of subsurface
properties is very uncertain as soon as the distance to the scarce measurement locations increases.
Therefore, hydro-geologists must rely on the use of analogues and expert knowledge to gener-
ate an ensemble of plausible geological realizations that can be used to quantify prediction uncertainty.

The reference observations consist of concentration breakthrough curves at different depths of the
domain outlet. Simulations are obtained in two steps. First, a plausible geological realization is
obtained as multiple-point statistics realizations generated with the Deesse algorithm (Mariethoz
et al., 2010 [5]) that reproduce the complex features of braided-river aquifer models (Pirot et al.,
2013 [16]). Then, the contaminant flow is simulated under steady-state flow and fixed boundary
conditions (constant hydraulic gradient) using the Maflot Matlab code (Kunze and Lunati, 2011
[10]), hence yielding simulated concentration breakthrough curves. Examples of plausible geologies
and breakthrough curves are shown in Figure 1. In this application, our reference observation is a
simulation in itself. Therefore, we know the exact depth of the contaminant source.

3



(a) First geological structure (b) Second geological structure

Figure 1: Two geological structures and associated simulated response for a source of depth 5m.
d=0m is the model inlet where we infer the depth of the contaminant source ; d=5m is the model
outlet where we can observe the concentration breakthrough curves.

We ran 50 (resp. 500) simulations using the approach mentioned above, computed the misfits (here,
L2 distances) between our reference observation and the simulations and used them to train our SLGP
model. In this application, the considered SLGP is constructed by transforming a centered GP with
a Matérn 5/2 covariance kernel, and inference of kernel hyperparameters is performed following a
Bayesian approach. From an implementation perspective, the joint posterior distribution of kernel
hyper-parameters and inducing values underlying the SLGP was approximated by MCMC. In turn,
we use resulting approximate posterior SLGP samples to estimate π[∆(yobs, yθ)|θ] and to derive the
corresponding ABC posterior π[∆(yobs, yθ) ≤ ε|θ]. The results are available in Figure 2.

(a) Using 50 simulations (b) Using 500 simulations

Figure 2: Misfit between observation and simulations and plausible ABC-posteriors for two different
sample sizes.

It is worth noting that even though the number of simulations would be highly insufficient to estimate
the posterior for a classical ABC approach, as there is here at best one simulation that yielded a misfit
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value under the threshold, our approach was still able to capture information from all the simulations
and locate the true source, with a confidence increasing with the number of simulations.

5 Conclusion and discussions

We presented a methodology allowing to enhance ABC-posterior estimation by leveraging the
regularity of dissimilarity distributions across parameter space. This methodology appeared to be
particularly promising for small to moderate sample sizes, as illustrated on a simple contaminant
localization example under uncertain geology. Some particularly appealing features of the proposed
approach is the use of the whole data set as opposed to keeping only those couples leading to small
dissimilarities to the observations, as well as the probabilistic nature of the employed model. Having
a probabilistic model enables delivering uncertainty assessments along with the estimates of interest,
a property that can be especially useful when working with data sets of moderate size. Furthermore,
disposing of a generative model could help exploring the effect of tuning ε on the overall approach,
potentially leading to more integrated and automated strategies. Of course, this is all relying on
model adequacy in the first place, and it would be valuable to further develop diagnostics and model
adjustment methods in order to best fit SLGPs to the data at hand as well as signal potential fitting
issues. In turn, consistency results in terms of the ABC posterior ought to be investigated. Finally,
we started to explore potentialities of SLGP models in order to create acquisition functions, and we
are looking forward to novel approaches pertaining to sequential design of experiments dedicated to
ABC (following up on recent works by Järvenpää et al. that rely on GPs [8, 9]) with a specific focus
on the potential benefits and challenges brought by SLGP models.

Broader impact

In physical sciences, acquiring new data is an expensive process, especially for the large scale or
complex phenomena. Therefore, being able to deliver consistent estimations of the quantity of
interests while accounting for the uncertainty due to the moderate sample size is crucial.
Upcoming work also aims at studying the potential of our model when it comes to guiding data
acquisition.
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