

Contribution

- What ? Enhancing ABC-posterior estimation by leveraging the regu dissimilarity distributions across parameter space.
- Why? ABC methods are simulation-consuming. Typically approaches for speeding up ABC usually relies on strong dis assumptions and/or space exploration strategies that can prematurel parameter regions.
- How ? A non-parametric model yielding probabilistic prediction of distribution field and therefore of the ABC posterior.

Bayesian inference

Setting: Given a parametric statistical model \mathcal{F}_{θ} for $\theta \in D$ and observation to stem from \mathcal{F}_{θ} , we want to infer θ ' value.

Bayesian approach: θ is treated as random, with prior distribution $\pi[\theta]$ distribution of θ knowing y_{obs} is:

 $\pi[\theta|y_{obs}] \propto \pi[y_{obs}|\theta] \pi[\theta]$

Issue: Often, the likelihood function is **intractable** or costly to evaluate

For the geological structure, d=0m is the model inlet where we infer the depth of the contaminant source ; d=5m is the model outlet where we can observe the concentration breakthrough curves.

Probabilistic ABC with spatial logistic Gaussian Process modelling

Athénaïs Gautier¹

¹Institute of Mathematical Statistics and Actuarial Science, University of Bern, Switzerland ²Centre for Exploration Targeting, The university of Western Australia, Australia

ABC framework	The SLGP for l
ABC assumptions: Simulating the response y_{θ} associated to θ is possible and a measure of dissimilarity Δ between responses is available	Available data: As in standard ABC, average misfits, noted $\{(\theta_1, \Delta(y_{obs}, y_1)),, (\theta_n)\}$
ABC approximation with respect to a prescribed "small enough" threshold $\epsilon > 0$: $\pi[\theta y_{obs}] \approx \pi[\theta \Delta(y_{obs}, y_{\theta}) \le \epsilon]$ (2)	Learning the dissimilarity distribution with a SLGP model conditioned on da
 Limitations: ABC is simulation consuming, most simulations are discarded In classical ABC, θ needs to be sampled from the prior or a prescribed suitable distribution Workaround usually rely on strong distributional hypothesis Only provides draws from the posterior 	$\frac{\pi[\Delta(y_{obs}, y_{\theta}) \leq \epsilon \theta]}{\text{Probabilistic ABC For } \epsilon > 0 \text{ and a prior}}$ $\pi[\theta \Delta(y_{obs}, y_{\theta}) \leq \epsilon \theta \theta \theta \Delta(y_{obs}, y_{\theta}) \leq \epsilon \theta \theta \theta \Delta(y_{obs}, y_{\theta}) \leq \epsilon \theta \theta \theta \theta \theta \theta \theta \theta \theta $
The Spatial Logistic Gaussian Process model Spatial Logistic Gaussian Process: we generalize logistic Gaussian process models used in density estimation to the case of density field estimation.	Strengths: • Leverages all sim • The θ_i do not nee
Definition: For a mean function $\mu : (D \times \mathcal{I} \mapsto \mathbb{R})$ and a covariance function k on $(D \times \mathcal{I}) \times (D \times \mathcal{I})$, let $W \sim \mathcal{GP}(\mu, k)$ (where \mathcal{GP} denotes a Gaussian Process), a random field of probability densities based on a SLGP is defined via:	 No strong distribution Probabilistic pred Generative mode
$p(t \theta) = \frac{e^{W(\theta,t)}}{\int_{\mathcal{T}} e^{W(\theta,u)} du} \forall(\theta,t) \in D \times \mathcal{I} $ (3)	Ackn
Prior: The random density field $p(t \theta)$ induces a prior over conditional densities.	AG's and DG's contributions have take tion project number 178858. AG and DG would like to warmly that cussions having motivated part of this
	ABC assumptions: Simulating the response y_{θ} associated to θ is possible and a measure of dissimilarity Δ between responses is available ABC approximation with respect to a prescribed "small enough" threshold $\epsilon > 0$: $\pi \theta y_{obs} \approx \pi \theta \Delta (y_{obs}, y_{\theta}) \le \epsilon]$ (2) Limitations: • ABC is simulation consuming, most simulations are discarded • In classical ABC, θ needs to be sampled from the prior or a prescribed suitable distribution • Workaround usually rely on strong distributional hypothesis • Only provides draws from the posterior The Spatial Logistic Gaussian Process model Spatial Logistic Gaussian Process: we generalize logistic Gaussian process models used in density estimation to the case of density field estimation. Definition: For a mean function $\mu : (D \times \mathcal{I} \mapsto \mathbb{R})$ and a covariance function k on $(D \times \mathcal{I}) \times (D \times \mathcal{I})$, let $W \sim \mathcal{GP}(\mu, k)$ (where \mathcal{GP} denotes a Gaussian Process), a random field of probability densities based on a SLGP is defined via: $\mu(t \theta) = \frac{e^{W(\theta, t)}}{\int_{\mathcal{I}} e^{W(\theta, u)} du} \forall (\theta, t) \in D \times \mathcal{I}$ (3)

References are provided in the accompanying paper

David Ginsbourger¹ Guillaume Pirot²

$$\equiv D \times \mathcal{I}$$
 (3)

^r likelihood free inference

available data consist in n couples of parameters and $\theta_n, \Delta(y_{obs}, y_n))\}.$

on field: The dissimilarity probability field is estimated data.

rior π the ABC posterior: $\leq \epsilon] \propto \pi[\Delta(y_{obs}, y_{\theta}) \leq \epsilon |\theta] \pi[\theta]$ misfit distribution field with the SLGP.

nowledgements

aken place within the Swiss National Science Founda-

nank Dr. Tomasz Kacprzak (ETH Zürich) for early discussions having motivated part of this work.

An application in geosciences: result

Figure 2. Misfit between observation and simulations (top) and plausible ABC-posteriors (bottom) for two different samples sizes (50 on the left, 500 on the right).

- Implementation details: SLGP constructed by transforming a centered GP with a Matérn 5/2 covariance kernel.
 - Inference of kernel hyper-parameters performed with a Bayesian approach.
 - Joint posterior distribution of kernel hyper-parameters and inducing values underlying the SLGP approximated by MCMC.

$$\int_{-\infty}^{\epsilon} p(u|\theta) |\{(\theta_i, \Delta(y_{obs}, y_i))\}_{i=1}^n du$$

(4)

imulations (not just those with low dissimilarity) need to stem from a distribution ibutional hypothesis on the misfit ediction provides **uncertainty quantification** del for the ABC posterior

