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Contribution

= What ? Enhancing ABC-posterior estimation by leveraging the regularity of
dissimilarity distributions across parameter space.

= Why ? ABC methods are simulation-consuming.
Typically approaches for speeding up ABC usually relies on strong distributional
assumptions and/or space exploration strategies that can prematurely exclude
parameter regions.

= How ? A non-parametric model yielding probabilistic prediction of the dissimilarity
distribution field and therefore of the ABC posterior.

Bayesian inference

Setting: Given a parametric statistical model Fy for 6 € D and observations y,;¢ assumed
to stem from Fy, we want to infer 8 value.

Bayesian approach: @ is treated as random, with prior distribution «|#]. The posterior
distribution of 8 knowing vy, IS:
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likelihood

Issue: Often, the likelihood function is intractable or costly to evaluate

An application in geosciences: setting

ABC framework

ABC assumptions: Simulating the response yg associated to 6 is possible and a measure
of dissimilarity A between responses is available

ABC approximation with respect to a prescribed “small enough” threshold € > 0:

W[e‘yobs] ~ W[H‘A(yob& y@) < E} (2)
Limitations: = ABC is simulation consuming, most simulations are discarded

= |n classical ABC, 8 needs to be sampled from the prior or a prescribed
suitable distribution

= Workaround usually rely on strong distributional hypothesis
= Only provides draws from the posterior

The Spatial Logistic Gaussian Process model

Spatial Logistic Gaussian Process: we generalize logistic Gaussian process models used
in density estimation to the case of density field estimation.

Definition: For a mean function p : (D x Z — R) and a covariance function k on (D x
)X (D xT),let W ~ GP(u, k) (where GP denotes a Gaussian Process), a random field
of probability densities based on a SLGP is defined via:
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Prior: The random density field p(t|6) induces a prior over conditional densities.
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One dimensional contaminant problem: we want to localize the depth of a contaminant source propagating into a saturated aquifer when

the geological structure is unknown.

The SLGP for likelihood free inference

Available data: As in standard ABC, available data consist in n couples of parameters and
misfits, noted {(01, A(Wops, Y1))s -5 (Ony AWops, Yn)) -

Learning the dissimilarity distribution field: The dissimilarity probability field is estimated
with a SLGP model conditioned on data.
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Probabilistic ABC For e > 0 and a prior w the ABC posterior:

W[‘Q'A(yobs? y@) < 6] X W[A<y0657 y@) < 6|9}7T[9} (4)
IS approximated by surrogating the misfit distribution field with the SLGP.

Strengths: = Leverages all simulations (not just those with low dissimilarity)
= The 6, do not need to stem from a distribution

= No strong distributional hypothesis on the misfit

= Probabilistic prediction provides uncertainty quantification

= Generative model for the ABC posterior
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An application in geosciences: result

Data (50 points, 0 misfit under ¢=0.1)

Data (500 points, 1 misfit under €=0.1)
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Figure 1. Two geological structures and associated simulated response for a source of depth 5m.

For the geological structure, d=0m is the model inlet where we infer the depth of the contaminant source ; d=5m is the model outlet where we can observe the

concentration breakthrough curves.
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Implementation details: = SLGP constructed by transforming a centered GP with a Matérn 5/2 covariance kernel.
= Inference of kernel hyper-parameters performed with a Bayesian approach.

= Joint posterior distribution of kernel hyper-parameters and inducing values underlying the SLGP approximated

by MCMC.
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