
Probabilistic ABCwith spatial logistic Gaussian Process modelling
Athénaïs Gautier 1 David Ginsbourger 1 Guillaume Pirot 2

1Institute of Mathematical Statistics and Actuarial Science, University of Bern, Switzerland 2Centre for Exploration Targeting, The university ofWestern Australia, Australia

Contribution

What ? Enhancing ABC-posterior estimation by leveraging the regularity of

dissimilarity distributions across parameter space.

Why ? ABC methods are simulation-consuming.

Typically approaches for speeding up ABC usually relies on strong distributional

assumptions and/or space exploration strategies that can prematurely exclude

parameter regions.

How ? A non-parametric model yielding probabilistic prediction of the dissimilarity

distribution field and therefore of the ABC posterior.

Bayesian inference

Setting: Given a parametric statistical model Fθ for θ ∈ D and observations yobs assumed

to stem from Fθ, we want to infer θ’ value.

Bayesian approach: θ is treated as random, with prior distribution π[θ]. The posterior

distribution of θ knowing yobs is:

π[θ|yobs] ∝ π[yobs|θ]︸ ︷︷ ︸
likelihood

π[θ] (1)

Issue: Often, the likelihood function is intractable or costly to evaluate

ABC framework

ABC assumptions: Simulating the response yθ associated to θ is possible and a measure

of dissimilarity ∆ between responses is available

ABC approximation with respect to a prescribed “small enough” threshold ε > 0:
π[θ|yobs] ≈ π[θ|∆(yobs, yθ) ≤ ε] (2)

Limitations: ABC is simulation consuming, most simulations are discarded

In classical ABC, θ needs to be sampled from the prior or a prescribed

suitable distribution

Workaround usually rely on strong distributional hypothesis

Only provides draws from the posterior

The Spatial Logistic Gaussian Process model

Spatial Logistic Gaussian Process: we generalize logistic Gaussian process models used

in density estimation to the case of density field estimation.

Definition: For a mean function µ : (D × I 7→ R) and a covariance function k on (D ×
I) × (D × I), let W ∼ GP(µ, k) (where GP denotes a Gaussian Process), a random field

of probability densities based on a SLGP is defined via:

p(t|θ) = eW (θ,t)∫
I eW (θ,u) du

∀(θ, t) ∈ D × I (3)

Prior: The random density field p(t|θ) induces a prior over conditional densities.
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The SLGP for likelihood free inference

Available data: As in standard ABC, available data consist in n couples of parameters and

misfits, noted {(θ1, ∆(yobs, y1)), ..., (θn, ∆(yobs, yn))}.

Learning the dissimilarity distribution field: The dissimilarity probability field is estimated

with a SLGP model conditioned on data.

π[∆(yobs, yθ) ≤ ε|θ] ≈
∫ ε

−∞
p(u|θ)|{(θi, ∆(yobs, yi))}n

i=1 du

Probabilistic ABC For ε > 0 and a prior π the ABC posterior:

π[θ|∆(yobs, yθ) ≤ ε] ∝ π[∆(yobs, yθ) ≤ ε|θ]π[θ] (4)

is approximated by surrogating the misfit distribution field with the SLGP.

Strengths: Leverages all simulations (not just those with low dissimilarity)

The θi do not need to stem from a distribution

No strong distributional hypothesis on the misfit

Probabilistic prediction provides uncertainty quantification

Generative model for the ABC posterior
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An application in geosciences: setting

One dimensional contaminant problem: we want to localize the depth of a contaminant source propagating into a saturated aquifer when

the geological structure is unknown.

Reference observations: concentration breakthrough curves at different depths of the domain outlet.

Simulations procedure: 1. A plausible geological realization is generated (multiple-point statistics realizations generated with the

Deesse algorithm

2. The contaminant flow is simulated under steady-state flow and fixed boundary conditions (using the Maflot

Matlab code

Dissimilarity between observations: Rescaled l2 distances.

(a) Reference observation yobs

(unknown geology)

(b) Simulation y1
(simulated geology and response)

(c) Simulation y2
(simulated geology and response)

Figure 1. Two geological structures and associated simulated response for a source of depth 5m.

For the geological structure, d=0m is the model inlet where we infer the depth of the contaminant source ; d=5m is the model outlet where we can observe the

concentration breakthrough curves.

An application in geosciences: result

Figure 2. Misfit between observation and simulations (top) and plausible ABC-posteriors (bottom) for two different samples sizes (50 on the left, 500 on the right).

Implementation details: SLGP constructed by transforming a centered GP with a Matérn 5/2 covariance kernel.

Inference of kernel hyper-parameters performed with a Bayesian approach.

Joint posterior distribution of kernel hyper-parameters and inducing values underlying the SLGP approximated

by MCMC.
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