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Abstract

We propose a model for learning a metric that simplifies the finding of particle
trajectories. A new learning process is designed such that geometrical and cluster-
ing constraints from spatial measurements are incorporated. The network allows
to map any set of input points into a new space where traces produced by the
same particle are clustered. The approach is experiment agnostic and results are
demonstrated on the TrackML dataset.

1 Introduction

Particle tracking in high energy physics is a particularly challenging task. At the time of writing,
no machine learning based solution was able to solve the TrackML challenge addressing both
efficiency and speed [1]. Moreover, applying off-the-shelf deep learning models that do not adequately
incorporate prior knowledge or physical constraints leads to poor generalization when confronted
with data taken in real world experiments. Point tracking, as a general problem requires a trajectory
hypothesis and therefore only enables a combinatorial approach where invalid roads are discarded at
a later stage. The complexity of the task is further increased in high energy physics and especially at
the High Luminosity Large Hadron Collider (HL-LHC) where the scale of the data produced leads to
a combinatorial explosion. A number of studies [1] investigated these challenges using the TrackML
dataset as benchmark. In this work, we propose to evolve metric learning based techniques by adding
physics driven constraints and noise robustness.

The core idea is to design a model able to map particle hits (technically similar to a 3D point cloud)
into a new space where the trajectories are well separated with the euclidean distance. Since we
use simulation data, it is possible to train the model in a supervised way with labels attached to the
input points. The use of Monte Carlo simulated data to design and validate the track reconstruction
algorithms is indeed a common technique in high energy physics. The labels (ground truth) are used
in the loss function to incorporate the geometric constraints of the output space. We use Approximate
Nearest Neighbors (ANN) as it was established in [2][3] to provide high quality independent bins
as model input. ANN(s) [4] are considered the current state of the art techniques for fast similarity
search. An ANN index is built for each event and hashes refer to ANN queries : a set of neighboring
points along the angular distance. These points (3 dimensional) constitute the input of the model
presented in this work.
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2 Tracking Loss Function: Push and Pull

Charged particle tracking is essentially a clustering problem where the number of clusters is very
high and the cluster size relatively low. In any clustering problem, the ideal feature space is one
where clusters are isolated enough for a distance threshold to split them and compact enough for
the clusters not to be split themselves. Our loss function is based on these two constraints and an
ideal learning strategy finds the balance between pulling and pushing data points until trajectories are
well separated. The performance of the model is measured by the total number of well reconstructed
particles, i.e. complete clusters. The weighted loss function is of the form :

LTrackNet = (αLC + βLI + γLCL)ζ (1)

LC =

K∑
i=0

S(ci) ; LI =
1

S(µ[1..k])
; LCL =

n∑
i=0

bi − ai
max(ai, bi)

(2)

where α, β, γ are weights of the loss function. During the optimization procedure, each weight
controls the relative importance and contribution of its associated term. ζ allows the amplification of
the total loss. S(ci) is the variance of cluster i and is computed for each of the K clusters present
in the current batch. S(µ[1..k]) is the variance of the K centroids. During the training, clusters are
formed from the network predictions using the true labels. To add further constraints on the cluster
compactness, we introduce a third loss term LCL that represents the silhouette coefficient of the true
clusters in the learned space. The silhouette coefficient allows for the homogenisation of cluster
shapes. It is defined in equation 2 where a is the mean intra cluster distance and b the mean distance
between a point i and every other point located in the nearest cluster. This quantity is average over
the n points considered in the model input. LC and LI alone, act on the centroid of the cluster and
would allow a non compact cluster shape (stretched cluster). The silhouette coefficient on the other
hand, acts on all the distances within a cluster.

Figure 1 describes the proposed model. A set of hits (as produced by individual particle traces) is
given as input. The hits can be associated to multiple particles and for illustration we choose a set
with a leading long particle P1 and smaller one P2. In this work, we only rely on the geometrical
information of the hits : global coordinates (3D) and the coordinates of the module responsible of the
readout (2D). Hence, each data point has five dimensions.
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Figure 1: Proposed model architecture: the model takes a bucket from the ANN search as input and
maps it into a new feature space where the clusters representing different particles are separated.

The network is composed of 4 dense layers with 50 nodes each. The gradual action of the loss
function is presented in the right side of Figure 1. The arrows represent the pushing/pulling strategy
of the learning. The main contribution of this work is the integration of the desired output shape and
constraints into the loss function. The wealth of particle patterns and trajectories is encoded in the
labels used to create the clusters during training. The evaluation metric to determine an architecture
performance is discussed in Section 3. The best model was obtained through a grid search that
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jointly scanned the network hyper-parameters and the loss weights. The best performing model uses
6 dimensions in the output with a tanh activation function that conveniently restricts the space to
the range (-1,1). Although the model is not optimized for a specific input size, we demonstrate
our approach on hashes of 10 hits since we are interested in particle seeds of four hits or more, i.e.
innermost part of the particle that allows to recover the full trajectory1. The hashes are constructed
from the angular distance of the hits.
Figure 2a shows the evolution of the loss function over the epochs as well as the compactness loss
LC and the isolation loss LI . The general variance within a cluster is decreasing and so is the inverse
of the isolation between clusters. The loss pattern on unseen buckets (validation) shows a similar
smooth decreasing tendency. We use early stopping on the validation set to determine the ideal
number of epochs.

Clustering the output
The proposed model pushes apart particles to enable an easy and intuitive track clustering. In the
learned feature space, it falls upon the clustering algorithm to decide at which distance to stop
considering points as similar (same cluster). Indeed, the task of the network is to ensure a large
enough distance between groups of particle hits. We propose to use a modified agglomerative
clustering to retrieve the particles. Agglomerative Clustering (AC) aligns well with the concept of
particle tracking since it starts from a single data point and merges clusters until a stopping condition
is met. Since particles have on average 10 data points, AC converges rapidly within a bucket. We use
as stopping criteria a threshold distance after which hits are considered to belong to two different
clusters. In practice, this distance is the same distance our network learns to increase, i.e. the distance
between cluster edges. We will refer to this quantity as the isolation distance. Figure 2b shows to the
evolution of the isolation distance of the largest cluster over the epochs. This metric is computed
from the network output space. The hits are grouped using their true labels and for each mapped
bucket, we record the distance between the largest cluster (largest particle) and the nearest hit that
does not belong to this particle. A good model maximizes this distance and pushes the largest particle
(the one we are interested to retrieve) away from the rest of the hits. In the first set of epochs (10,
50 and 100) we can observe the general trend of regressing first bins as we have fewer examples
that are mapped to a space where particles are close by. The model at epoch 100 shows the best
performance : higher isolation distances. At epoch 500 however, the model seem to collapses with
a clear shrinking of the isolation distance. This behavior at higher epochs seems independent from
the weights assigned to the compactness and isolation terms in the loss function. Once the best
model configuration is selected (maximizing the isolation distance), we determine the clustering
threshold value that best discriminates clusters. This threshold is highly dependant on the network
architecture and loss weights as different architectures produce different mappings and therefore
isolation distances.

(a) (b)

Figure 2: Evolution of the model performance over the epochs. (a) shows the convergence of the
model via the loss function and its terms LI and LC . (b) describes the isolation distance of the largest
cluster per output.

1It has been demonstrated that even classical pattern recognition methods are extremely efficient and relatively
fast when fed with a high quality seed.
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3 Testing and Results

In this study, we consider two performance evaluation metrics. Firstly, the similarity learning model
is evaluated on the output representation, i.e. whether particles are clustered and pushed apart (Figure
2b ). Secondly, the main particle tracking performance is whether the obtained clusters contain full
particles (efficiency) and only full particles (purity). We generate as many hashes as there are data
points in a TrackML event : approximately 100 thousand data points. The selected event is unseen
during training. Using the trained model, every hash is mapped to the new feature space. There are
two scenarios in this application. Either the hash (or bucket) contains a particle trajectory formed
by four hits at least or the hits of the bucket do not contain any reconstructable particle (we require
four data points to form a trajectory). Since the compactness of particles is enforced through the LC
in the training procedure, a dense (or containing dense regions) mapping will be an indicator of the
presence of a particle. Therefore, we chose to reconstruct buckets that are mapped to clusters of at
least four points. This threshold allows to discard noise (fake trajectories).

In the filtered resulting clusters, two metrics are considered : Efficiency and Purity. These metrics
are defined at the cluster level. The efficiency of cluster ci with associated labels li = [p1, ...pn]
is the ratio of the most common label occurrence and the total number of points sharing this label
inside a bucket (and not the full event). That is, the fraction of the largest particle per cluster. The
purity is the fraction of hits sharing the same label (per cluster). A cluster with a 100% efficiency and
100% purity contains a full particle (in the bucket) and only that. The inefficiency of hashing is not
represented in these two quantities. Figure 3a presents an example of a mapping using the network
on a 20 hits bucket to highlight the impact on long trajectories. The bucket, in the original scaled
detector coordinates (R,Z) contains two close-by tracks (practically merging in this projection), with
different colors, evolving from bottom to top. On the right side of the figure is the mapping of the
network where the two tracks are clearly separated.

Figure 3b shows the resulting efficiency and purity on a full event for hashes of 10 hits. Each entry
in the 2D histogram represents a cluster with at least 4 hits. Both performance metrics include
noise buckets with no reconstructable particle. The efficiency (horizontal axis) reflects the network
performance while the purity (vertical axis) is a function of the clustering performance. Despite
an average of 74% efficiency, overall the inefficiencies are attributed to the clustering (less purity)
rather than the similarity learning model. Both the particle size and cluster size in this 2D histogram
average 6 hits. Although the trade-off between efficiency and purity is high enough, it is heavily
penalized by the fixed nature of the clustering stopping criteria. A dynamic stopping criteria is
likely to improve both clusters of 100% efficiency and low purity and those of 100% purity and low
efficiency. Additionally, it is worth mentioning that the fraction of filtered clusters and buckets plays
a major role in fake reduction and computational speed.

(a) (b)

Figure 3: (a) Example of a mapped bucket (left to right) with colors indicating different particle
trajectories. Dark Crosses denote noise hits. (b) Joint distribution of the efficiency and purity per
filtered cluster.
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4 Conclusion and Outlook

Our work adapts and adjusts powerful deep learning tools to match the complex problems encountered
in high energy physics. In this context, we have introduced a tracking targeted similarity learning
procedure. The mapping is learned through the incorporation of geometrical and clustering constrains.
The proposed model is able to map unseen data points into meaningful and tracking-adapted repre-
sentations. The variety of particle trajectories in high energy physics makes it compelling to learn
a new representation where a combinatorial approach is no longer needed. Deriving the clustering
stopping criteria dynamically from the model mapping is an important next step.

Broader Impact

The reasoning behind the design of the loss function can be used in a wide range of point tracking
application where expert knowledge is available. Although point tracking can be found in multiple
domains, the considerations that guided this work are specific to high energy physics where the data
rate and processing constraints are unparalleled. Since detector geometry is not a requirement of
the approach, the model and loss design can be exploited in different experiments facing a high
multiplicity of the data. At the time of writing, machine learning for charged particle tracking is in
its infancy and no negative outcome is foreseen from this research. This paper seeks to promote the
adaption of deep learning methods into high energy physics.
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