

Physics-Informed Neural Network Super Resolution for Advection-Diffusion Models

- typically in the scale of tens of kilometers per pixel.
- (problem of missing pixels).
- not suitable for physics problems.

Chulin Wang, Eloisa Bentivegna, Wang Zhou, Levente J. Klein, Bruce Elmegreen **IBM Research**

Baselines

- **PINNSR** -- Our proposed approach

Metrics

- Peak Signal-to-Noise Ratio (PSNR)
- Structural Similarity Index Measure (SSIM)
- Physics consistency loss

- PINNSR with physics consistency loss shows superior performance on both reconstruction accuracy (11%) improvement) and physics consistency.
- The method is robust even if pixels are missing as commonly observed in satellite images.

Results

• **Bicubic** -- use bicubic interpolation to fill the missing pixels and 4× upsample • **Dwn-HR** -- trained with down-sampled HR as input, test on simulated LR • Std-SR -- trained on simulated LR but without the physics consistency loss

PSNR / 1 $ \mathrm{SSIM}$ / $\mathcal{L}_{\mathrm{phys}}$						_
Dwn-HR		Std-S	SR	P	INNSR	
/ 0.0058 / 1 / 0.0064 / 1 / 0.0065 / 1 / 0.0061 / 0	.1E-6 82.2 .5E-6 82.3 .1E-6 81.1 .8E-6 78.4	9 / 2.1E- 5 / 0.9E- 9 / 1.5E- 4 / 2.7E-	6 / 2.8E-7 6 / 1.8E-7 6 / 3.0E-7 6 / 4.1E-7	82.83 / 2 82.71 / 1 82.12 / 1 79.02 / 2	.0E-6 / 0.9E-7 .5E-6 / 1.2E-7 .3E-6 / 1.5E-7 .3E-7 / 2.6E-7	7 7 7
$-C_{\rm HR} = 0.050$	(d) C _{Dwn-HR}	- 0.2 - 0.1 - 0.0	(e) $C_{\rm Std-SR}$ (i) $C_{\rm Std-SR} - C$	- 0.2 - 0.1 - 0.0	(f) C _{PINNSR} (j) C _{PINNSR} – C _{HF}	- 0.2 - 0.1 - 0.0
- 0.025 - 0.000 0.025 - 0.025 - 0.025		$\begin{bmatrix} -0.025 \\ -0.000 \\ -0.025 \\ -0.050 \end{bmatrix}$		$ \begin{array}{c} - 0.0005 \\ - 0.0000 \\0.0005 \\ - 0.0010 \end{array} $		- 0.0005 - 0.0000 0.0005 0.0010
$-C_{\rm HR}$ 0.050 -0.025 -0.025 -0.025 -0.050	(i) $C_{\text{Dwn-HR}} - C$	$\begin{bmatrix} HR & 0.050 \\ -0.025 \\ -0.000 \\ -0.025 \\ -0.050 \end{bmatrix}$	(m) C _{Std-HR} –	$C_{\rm HR}$ 0.0010 -0.0005 -0.0005 -0.0010	(q) $C_{\text{PINNSR}} - C_{\text{H}}$	R 0.0010 - 0.0005 - 0.0000 0.0005 0.0010
$-C_{\rm HR}$ 0.050 0.025 0.000 -0.025 -0.025 -0.050	(j) $C_{\text{Dwn-HR}} - C$	$2^{H_{R}}$ 0.050 - 0.025 - 0.000 0.025 - 0.050	(n) $C_{\text{Std-HR}}$ – ($C_{\rm HR}$ 0.0010 - 0.0005 - 0.0000 0.0005 - 0.0010	(r) $C_{\text{PINNSR}} - C_{\text{H}}$	$ \begin{array}{c} \mathbf{R} \\ 0.0010 \\ \mathbf{-} \\ 0.0005 \\ \mathbf{-} \\ 0.0000 \\ \mathbf{-} \\ -0.0005 \\ \mathbf{-} \\ 0.0010 \end{array} $
$-C_{\rm HR} = 0.050$ -0.025 -0.025 -0.025 -0.050	(k) $C_{\text{Dwn-HR}} - C$	$\begin{bmatrix} -10000 \\ -10000 \\ -10000 \\ -00025 \\ -00050 \end{bmatrix}$	(o) C _{Std-HR} – ($C_{\rm HR}$ 0.0010 = 0.0005 = 0.0000 = -0.0005 -0.0010	(s) $C_{\text{PINNSR}} - C_{\text{H}}$	$ \begin{array}{c} R \\ - 0.0005 \\ - 0.0000 \\ 0.0005 \\ - 0.0010 \end{array} $
$-C_{\rm HR}$ 0.050 0.025 0.000 -0.025 -0.050	(I) $C_{\text{Dwn-HR}} - C$		(p) $C_{\text{Std-HR}} - C$	$C_{\rm HR}$ 0.0010 - 0.0005 - 0.0000 0.0005 - 0.0010	(t) $C_{\text{PINNSR}} - C_{\text{H}}$	$ \begin{array}{c} \mathbf{R} \\ 0.0010 \\ 0.0005 \\ 0.0000 \\ 0.0000 \\ \mathbf{-0.0005} \\ \mathbf{-0.0010} \end{array} $

Conclusion

