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Abstract

While most systems are governed by quantum mechanics at the nanoscale, it is
almost always prohibitively expensive to simulate these systems by exactly solving
Schrödinger’s equation. For this reason, a hierarchy of approximate models are
commonly used in biology, chemistry, and materials science that allow practitioners
to trade-off between accuracy and speed to simulate larger systems at longer time
scales. Recently, significant attention has been devoted to leveraging machine
learning to develop new and more accurate approximations. While these approxi-
mate models have typically been assessed based on their average-case performance,
recent work in the adversarial example literature in other domains has offered
ample evidence that this is often a poor indicator of worst-case performance. Here
we show that there is a well defined sense of adversarial direction that governs
the worst-case behavior for these approximate models of physical systems. Un-
like in other contexts, where adversarial examples are scarce absent malicious
intervention, in physical systems we show that the laws of physics can naturally
lead the system to move in adversarial directions. Surprisingly, we find that these
adversarial directions can exist even for traditional, analytic force fields such as the
BKS potential. We verify our predictions by comparing a variety of hand-designed
and machine learned models of quantum mechanical energies, including Behler-
Parrinello and graph neural networks trained on energies or forces, and ab initio
quantum mechanical calculations. We conclude by discussing strategies that can
prevent a physical model from moving in its adversarial directions, such as training
on forces or adversarial forces.

1 Introduction

Although quantum mechanics offers a framework to exactly solve for the dynamics of physical
systems, it is intractable in all but the simplest cases. To overcome these computational difficulties,
physicists have developed a hierarchy of approximate models that span a wide range of accuracy-to-
performance trade-offs (e.g. Ref.[1–5], see Related Work in Appendix for more examples). Recently,
neural networks have become essential building blocks of these approximate models; however, the
validity of these approximate models is usually reported averaged over test data. In this paper we take
inspiration from adversarial examples in computer vision and evaluate the worst-case performance of
a wide range of approximate physical models.

We show that adversarial examples proliferate approximate energy models, including state-of-the-art
neural networks and hand-designed polynomial fits that predate deep learning. Moreover, we show
that physical systems can sometimes naturally be driven in these adversarial directions when using
Newton’s laws to simulate molecular systems. This is in sharp contrast to adversarial examples in
computer vision where a malicious adversary is required to produce them. As such, although the
relevance of adversarial examples in computer vision is debated [6–8], dealing with them seems to be
an essential step in developing robust physical models.
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2 Approximate energy models in computational sciences

According to quantum mechanics, the properties of a system can be derived from the Hamiltonian
operator, whose eigenvalues correspond to the energy. In less accurate classical approximations, the
energy of a system still plays a central role. The positions of N atoms in 3-dimensions will be defined
by a vector ~R ∈ RN×3. Either via Density Functional Theory (DFT) or using an empirical potential
we can assign an energy, E(~R), to a given configuration. With an energy in hand, the atoms move in
the direction of the forces on them which is given by the gradient of potential energy with respect
to atomic positions ~F = −∇~RE(~R), where ~F denotes the forces on N atoms, and ~R denotes the
positions of atoms. The accuracy of materials property predictions (such as mechanical, dynamic,
and catalytic) are dependent on the accuracy of E(~R) compared to the quantum mechanical energy.

It follows that, an important metric for measuring the accuracy of an approximate energy model is:

L =
∑
j

[
EAcc(~Rj)− EApp(~Rj)

]2
, (1)

where j is an index that runs over the atomistic configurations (samples) in a dataset, EAcc(~R) is
the more accurate but slower energy model, and EApp(~R) is the approximate energy model. In
machine learning (ML) applications, DFT is often used to compute EAcc(~R) and a neural network is
trained to predict EApp(~R). The loss in Equation (1) is most commonly used loss for training ML
models to speed up quantum mechanical calculations[9–13] (or it is commonly used as one of the
terms in the loss [14, 15]). However, the analysis in this paper is not restricted to models that use the
particular loss in Eq. 1. For ML models that use a different loss (e.g. one in terms of forces or other
materials properties) or even for non-ML energy models, the value of L is still extremely relevant for
quantifying the quality of the model. As described above, we will consider non-ML models that were
not trained using Eq. (1) as well as various ML models.

3 Adversarial directions for approximate physics models

To generate adversarial examples for physical systems by analogy to previous work in vision, we will
seek to maximize the discrepancy between the predictions of our model and the ground truth target.
It follows that the adversarial direction for the jth configuration in a dataset is defined by taking the
gradient of Eq. 1 with respect to ~Rj :

~A(~Rj) ≡ ∇~Rj
L = ∇~Rj

(
EAcc(~Rj)− EApp(~Rj)

)2
(2)

= 2
(
EAcc(~Rj)− EApp(~Rj)

)
︸ ︷︷ ︸

scalar

(
~FApp(~Rj)− ~FAcc(~Rj)

)
. (3)

Thus the adversarial direction can be written as a scalar multiplying the difference between the forces
on the atoms according to the accurate energy model and the forces according to the approximate
model. Physical systems of interest are often close to their local minimum in the energy landscape.
For systems in equilibrium, for instance, we know that the probability of observing a configuration
decreases exponentially with its energy (P (~Rj) ∝ exp(−∆E(~Rj)/kT )). By construction, config-
urations that are close to a local minimum will feature small forces in the accurate model and so
||~FAcc|| � 1. However, if the forces calculated by the approximate energy model (~FApp) are not
small, the adversarial direction can be approximated as (i.e. assuming ||~FApp|| � ||~FAcc||):

~A(~Rj) ≈ C ~FApp(~Rj), (4)

where C is a scalar that can be positive or negative. For configurations where this approximation is
valid, the approximate energy model will move the system in its own adversarial direction, and thus
adversarial examples will likely be encountered. In the next section, we will measure the validity of
our approximation for several model systems: including neural networks models, traditional analytic
models, and quantum mechanical calculations.
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ε = 0 ε = 0.1 ε = 0.3 ε = 0.5
Random direction 5.1 5.3 5.9 6.8
Adversarial direction 5.1 15.4 31.9 42.0

Table 1: Error grows faster due to distortions in the adversarial direction compared to random
directions. Error is measured in meV/atom, and ε is the L2-norm of the distortion, measured in Å2.
Typically atoms are separated by several Å, thus a total distortion size of ε = 0.5 Å2 is very small.
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Figure 1: BP-NN with accurate energy predictions has adversarial directions aligned with its
forces. NN is trained on BKS energy calculations of SiO2 configurations. a) Points represent the
energy prediction of the neural network (ENN ) vs. the labels (EBKS) for test configurations. Red
dashed line denotes perfect agreement. b): Histogram density of cos θadvF for test configurations.
c) Average of |cos θadvF | vs. ∆E, the energy (EAcc) above the local minimum. We see that the
magnitude of overlap between the adversarial direction and ~FApp goes down with ∆E.

We now investigate the presence of adversarial directions, and their overlap with the force, for range
of choices for EAcc and EApp. After training the approximate energy model, EApp, we compute its
adversarial direction ~A(~Rj) using Eq. (3). To evaluate how aligned the adversarial direction is with
the force, ~FApp(~Rj), we compute the cosine-angle between the two vectors,

cos θadvF =
~A(~R) · ~FApp(~R)

|| ~A(~R)|| ||~FApp(~R)||
. (5)

Note that both ~A(~Rj) and ~FApp are 3N-dimensional vectors where N is the number of atoms along
with three spatial directions for each atom. Since our systems have 50 to 100 atoms, the cosine-angle
between two random vectors is close to 0. For each system studied we evaluate the error of the model
and the distribution of cosine-angles. We will see that even well-performing models typically have
high alignment with adversarial directions. Moreover, we will find that the sign of the overlap is
random; this agrees with the observation that the constant C in Eq. (4) will have a random sign.
Additionally, we recall that Eq. (4) will be accurate when the system is near a minimum of the energy.
To validate this approximation and to show that adversarial examples become particularly problematic
near extrema, we also evaluate the average magnitude of the cosine-angle, cos θadvF , as a function of
the energy above the local minimum, ∆E.

3.1 Behler-Parrinello Neural Network (BP-NN) approximating BKS1

We train the BP-NN model to achieve per-atom root-mean-squared-error (RMSE) of 5.1 meV/atom,
so that its accuracy is comparable to more realistic tasks, which is 4-7 meV/atom (for example, see
[9, 16]). The training and test data is sampled by displacing atoms about their equilibrium positions,
with the total displacement uniformly sampled between 0 and 1.0 Å2. Fig. 1(a) is a scatter plot of
labels and corresponding predicted energies for a test set of 2000 configurations. We then calculate
the error after distorting the atoms, in all configurations, either randomly or in the direction of ~A(~R).
Table 1 shows that while the error grows modestly when the atoms are moved in random directions, it
grows significantly when they are moved in the adversarial direction by the same total distortion size.
This measurement shows that atoms moving in the adversarial directions can be problematic for the
fidelity of simulations.

The BP-NN model naturally moves in the adversarial direction, as argued in Section 3. To see this,
we show in Fig. 1(b) that the magnitude of cos θadvF is large, which indicates that the adversarial

1BP-NN implementation within JAX-MD is available as a Colaboratory notebook at:
github.com/google/jax-md/blob/master/notebooks/jax_md_cookbook.ipynb
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Figure 2: Energy prediction error of the molecular physics model grows with every step. a)
Each point is the percentage increase in error after a single step. Red curve denotes no change. We
see that even after a single step in the direction of ~FApp, configurations for which cos θadvF (~R) > 0

has significantly larger error. Interestingly, configurations for which cos θadvF (~R) < 0 have lower
error (naturally bounded by -100%). b) Energy prediction error as the system evolves under ~FApp.

direction is approximately aligned (or anti-aligned) with ~FApp for most configurations. Note that the
adversarial direction is in a 3N dimensional space, and two random vectors in this space have very
small overlap. We see that the alignment is positive for some of the configurations and negative for the
others (corresponding to C from Eq. 4 being negative or positive, respectively). Finally, we evaluate
how the alignment depends on energy relative to the local minimum. In Section 3, we had argued
that the approximation would only be valid for small ~FAcc, which corresponds to configurations near
the local minimum. Fig. 1(c) shows that the magnitude of cos θadvF goes down with ∆E.

Estimating the error due to high cos θadvF : In Fig. 2(a) we present the change in error after taking
one step in the simulation (atoms are moved in the direction of ~FApp according to Newton’s second
law). We see that for configurations where the adversarial direction is pointing in the same direction as
the neural network force (in other words, cos θadvF (~R) > 0), the error on the next step is almost always
larger, often by more than 100%. Interestingly, we see that for most of the configurations where the
adversarial direction is pointing in the opposite direction of ~FApp (in other words, cos θadvF (~R) < 0),
the error on the next step of simulation goes down.

Next, we calculate the error as system takes multiple steps following ~FApp. Molecular energy models
are often evolved for many steps, up to thousands if the model is used for structural optimization, and
up to 400 billion steps if the model is used for molecular dynamics [17]. In structural optimization,
the goal is to find lower energy configurations for an atomistic systems (similar to finding lower-
loss configurations of weights for neural networks). An indispensable component of structural
optimization [18, 19] is gradient descent, where atoms are moved in the direction of forces for many
iterations. In the case where the model force, ~FApp, is aligned with the adversarial direction, it is
plausible that the model error will grow with each step. To evaluate this, we apply gradient descent
for 30 steps using ~FApp. At every step, we also evaluate the correct energy, EAcc, and report the error
in Fig. 2(b). We see that before we take any steps, the error is same as the i.i.d test error. However,
with each step, the error grows, and ends up more than 5 times larger after 30 steps. This suggests
that for one of the most important applications of molecular physics models, the effective error of the
model might be significantly larger than the error estimated on the i.i.d. test set.

3.2 Traditional analytic model approximating DFT

In the previous example, we analyzed a commonly used, machine learned energy model. As
mentioned above, the loss defined by Eq. 1 is an important metric for evaluating the accuracy of any
model, even if it is not trained with this loss function, or even if it is not an ML model. Following
this intuition, we study the adversarial directions of the BKS model [20–22], a traditional analytic
model that only has 12 free parameters (see Appendix 4 for details about the BKS potential).

For this particular experiment, we use DFT as (EAcc), and the BKS potential (defined by Eq. 6),
as EApp. Despite the small number of fitting parameters in the BKS potential and the fact that the
parameters are not trained to reproduce DFT energies, EAcc and EApp are in decent agreement for
configurations we sampled by randomly displacing atoms about their equilibrium position, with a
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Figure 3: A simple analytic model with 12 parameters still has adversarial directions aligned
with its forces. The BKS model was not trained using DFT energies. a) Points represent the energy
prediction (EBKS) vs. the labels (EDFT). Red dashed line denotes perfect agreement. b): Histogram
density of cos θadvF for test configurations. c) Average magnitude of cos θadvF vs. ∆E.

total distortion size of 0.3 Å2 (see Fig. 3(a)). Next, we measure cos θadvF for the BKS model. We see
that for this analytic energy model, the adversarial directions are still aligned with ~FApp, but perhaps
to a smaller extent than the machine-learned models. We emphasize that the BKS model is not an
ML model, so the adversarial direction considered here is not the adversarial direction of the training
objective. Nonetheless, Eq. 1 represents one of the most important metrics that define the quality of
this model and we see that forces will move atoms in directions that strongly correlate with ~A(~Rj).

Avoiding adversarial directions: The best defense against adversarial examples is adversarial
training [23, 24], which involves training on adversarial examples. A direct analogy for physical
models would be to train on configurations reached by taking a step in the adversarial direction. A
related protocol would be to augment the training set by taking a step from the configurations in the
training set in the direction of ~FApp. While this is not exactly adversarial training, it is related, since
the adversarial directions and ~FApp are correlated. We have seen at least one example of this training
protocol in the literature, where the authors found that including configurations that are 1 to 2 steps in
the future of their training configurations, as predicted by their neural network, improved the overall
quality of their simulation [25]. Similarly, Ref. [26] found that adding Gaussian noise during training
reduced their point prediction accuracy, but improved their roll-out accuracy (which involves taking
steps in the direction of their ~FApp). Adding Gaussian noise during training is known to increase
adversarial robustness while reducing clean accuracy (accuracy on validation samples that come from
the same distribution as the training set) [27], which might explain why Sanchez-Gonzalez et al.
found that their models trained with noise had worse clean accuracy but better roll-out accuracy [26].

Another related protocol to adversarial training is to train on ~FAcc. Since ~FAcc is also correlated with
~FApp, this protocol is also likely to have benefits for adversarial robustness. To test this, we trained
a graph neural network (GNN) [28, 14, 29–31] on DFT energies, and we trained another GNN on
the energies and forces on the same configurations, using JAX-MD [32, 33]2. We found that the
model trained only on energies has large |cos θadvF | for most samples in the validation set (Fig. 4(e)),
where the magnitude is larger for configurations closer to the local minimum(Fig. 4(f)). For the GNN
trained on both energies and forces, the situation is much better (Fig. 5(b)), although the magnitude
of cos θadvF is still large for configurations close to the local minimum (Fig. 5(c)). Training on ~FAcc

and EAcc concurrently is common for ML force field, and this experiment suggests that such models
may not move in their own adversarial directions. Further work is needed to see if the high |cos θadvF |
close to the local minima is a concern for these models, and whether higher order quantities (for
example, the vibrational modes) exhibit adversarial directions.

Conclusion:We have shown that the adversarial directions for approximate energy models can be
aligned with their forces near local extrema. This alignment is observed for several commonly used
physics and ML models (See Section 5 in the Appendix for Behler-Parrinello and graph neural
networks, trained with and without forces on DFT data). We showed that this phenomenon could
have drastic implications for the fidelity of physics simulations, for a particularly popular application
of structural optimization. These results support the view that approximate physics models should
not be evaluated by accuracy metrics on i.i.d. test sets, given their natural tendency to get out of the
i.i.d. distribution.

2GNN implementation is available as a Colaboratory notebook at:
github.com/google/jax-md/blob/master/notebooks/neural_networks.ipynb
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Broader Impact

Machine learning is gaining popularity as a modeling tool in the physical sciences. This trend is likely
to continue, since scientists are having to deal with much more data than than ever before, whether
the data is from experiments or from simulations. However, the reliability of these machine learning
models is crucially important, if they can be of use to make scientific or technological progress.
Our paper highlights a particular failure point for molecular physics models, and suggests that such
models should be expected to have worse fidelity than might be expected from their performance on
i.i.d. test set.

Acknowledgments and Disclosure of Funding

We are grateful to Lusann Yang for helping with the DFT simulations, and Gowoon Cheon for
feedback on the manuscript and pointing out the similarity between adversarial training and the
training protocol in Ref. [25]. We are also grateful to Mathieu Bauchy and Ruoxia Chen for their
help with the implementation of the BKS potential in JAX-MD. Finally, we thank our reviewers for
valuable feedback on the manuscript.

References
[1] Gang Lu and Efthimios Kaxiras. An overview of multiscale simulations of materials. arXiv

preprint cond-mat/0401073, 2004.

[2] Kurt Lejaeghere, Gustav Bihlmayer, Torbjörn Björkman, Peter Blaha, Stefan Blügel, Volker
Blum, Damien Caliste, Ivano E Castelli, Stewart J Clark, Andrea Dal Corso, et al. Reproducibil-
ity in density functional theory calculations of solids. Science, 351(6280), 2016.

[3] Adri CT Van Duin, Siddharth Dasgupta, Francois Lorant, and William A Goddard. Reaxff: a
reactive force field for hydrocarbons. The Journal of Physical Chemistry A, 105(41):9396–9409,
2001.

[4] Ferdi Aryasetiawan and Olle Gunnarsson. The gw method. Reports on Progress in Physics, 61
(3):237, 1998.

[5] Thomas Y Hou and Xiao-Hui Wu. A multiscale finite element method for elliptic problems
in composite materials and porous media. Journal of computational physics, 134(1):169–189,
1997.

[6] Justin Gilmer, Ryan P Adams, Ian Goodfellow, David Andersen, and George E Dahl. Motivating
the rules of the game for adversarial example research. arXiv preprint arXiv:1807.06732, 2018.

[7] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical
world. arXiv preprint arXiv:1607.02533, 2016.

[8] Jiajun Lu, Hussein Sibai, Evan Fabry, and David Forsyth. No need to worry about adversarial
examples in object detection in autonomous vehicles. arXiv preprint arXiv:1707.03501, 2017.

[9] Jörg Behler and Michele Parrinello. Generalized neural-network representation of high-
dimensional potential-energy surfaces. Physical review letters, 98(14):146401, 2007.

[10] Jörg Behler. Atom-centered symmetry functions for constructing high-dimensional neural
network potentials. The Journal of chemical physics, 134(7):074106, 2011.

[11] Albert P Bartók, Mike C Payne, Risi Kondor, and Gábor Csányi. Gaussian approximation
potentials: The accuracy of quantum mechanics, without the electrons. Physical review letters,
104(13):136403, 2010.

[12] Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, and O Anatole Von Lilienfeld.
Fast and accurate modeling of molecular atomization energies with machine learning. Physical
review letters, 108(5):058301, 2012.

6



[13] Grégoire Montavon, Katja Hansen, Siamac Fazli, Matthias Rupp, Franziska Biegler, Andreas
Ziehe, Alexandre Tkatchenko, Anatole V Lilienfeld, and Klaus-Robert Müller. Learning
invariant representations of molecules for atomization energy prediction. In Advances in neural
information processing systems, pages 440–448, 2012.

[14] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 1263–1272. JMLR. org, 2017.

[15] Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network
for modeling quantum interactions. In Advances in neural information processing systems,
pages 991–1001, 2017.

[16] Nongnuch Artrith and Alexander Urban. An implementation of artificial neural-network
potentials for atomistic materials simulations: Performance for tio2. Computational Materials
Science, 114:135–150, 2016.

[17] David E Shaw, Ron O Dror, John K Salmon, JP Grossman, Kenneth M Mackenzie, Joseph A
Bank, Cliff Young, Martin M Deneroff, Brannon Batson, Kevin J Bowers, et al. Millisecond-
scale molecular dynamics simulations on anton. In Proceedings of the conference on high
performance computing networking, storage and analysis, pages 1–11, 2009.

[18] Chris J Pickard and RJ Needs. Ab initio random structure searching. Journal of Physics:
Condensed Matter, 23(5):053201, 2011.

[19] Artem R Oganov, Chris J Pickard, Qiang Zhu, and Richard J Needs. Structure prediction drives
materials discovery. Nature Reviews Materials, 4(5):331–348, 2019.

[20] BWH Van Beest, Gert Jan Kramer, and RA Van Santen. Force fields for silicas and aluminophos-
phates based on ab initio calculations. Physical Review Letters, 64(16):1955, 1990.

[21] Antoine Carré, Simona Ispas, Jürgen Horbach, and Walter Kob. Developing empirical potentials
from ab initio simulations: The case of amorphous silica. Computational Materials Science,
124:323–334, 2016.

[22] Han Liu, Zipeng Fu, Yipeng Li, Nazreen Farina Ahmad Sabri, and Mathieu Bauchy. Machine
learning forcefield for silicate glasses. arXiv preprint arXiv:1902.03486, 2019.

[23] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014.

[24] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[25] Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. Lagrangian fluid sim-
ulation with continuous convolutions. In International Conference on Learning Representations,
2019.

[26] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter W Battaglia. Learning to simulate complex physics with graph networks. arXiv preprint
arXiv:2002.09405, 2020.

[27] Nic Ford, Justin Gilmer, Nicolas Carlini, and Dogus Cubuk. Adversarial examples are a natural
consequence of test error in noise. arXiv preprint arXiv:1901.10513, 2019.

[28] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning
molecular fingerprints. In Advances in neural information processing systems, pages 2224–
2232, 2015.

7



[29] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

[30] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Ried-
miller, Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for
inference and control. arXiv preprint arXiv:1806.01242, 2018.

[31] Victor Bapst, Thomas Keck, A Grabska-Barwińska, Craig Donner, Ekin Dogus Cubuk,
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Appendix

4 Implementation details

To investigate the presence of adversarial directions, and their overlap with the force, we experiment
with standard ML architectures and physics simulation tools. All ML models were trained on a single
P100 GPU. All of the machine learning experiments (BP-NN and GNN) and the physics calculations
(except for DFT) were implemented within JAX-MD3 [32, 33]. Below we summarize the tools used
in this study in detail.

Quantum mechanical simulations We perform the DFT calculations using the state-of-the-art
Vienna Atomistic Simulation Package (VASP) [34].

Behler-Parrinello architecture The Behler-Parrinello neural network (BP-NN) [9] is a popular
architecture for learning quantum mechanical energies (for example, see [35, 36, 16, 37–40]). The
BP-NN consists of hand designed features computed for each atom, α, φα(~R), that are fed into small
fully-connected networks f(φα(~R); θ). The predictions for each atom are then summed to produce,
EApp(~R) =

∑
α f(φα(~R)). We use 2 hidden-layers and 30 hidden-nodes per layer atomic neural

network, and the tanh activation function. We train using the momentum optimizer with a learning
rate of 5 × 10−6 and batch size of 15, for 500 epochs. Note that this neural-network model was
trained using the loss defined in Eq. 1, so the adversarial direction computed for this model is exactly
the direction that maximizes the training objective.

Graph neural networks Recently, graph neural networks [28, 14, 29–31] (GNN) have emerged as
an effective architecture for molecular systems. Here we construct a graph from each configuration
by considering two atoms as joined if the distance between them is less than a threshold (σ = 3A).
Each node is initialized to have state ni = 0 and each edge is initialized to have a state equal to the
displacement vector between the two atoms ~rαβ = ~rα − ~rβ along with a global state g = 0. We sum
messages from incoming edges to update the node state and edge state using fully-connected networks
with two-hidden layers and ReLU activations. After hyperparameter optimization we find that single
message passing step is optimal. We train the model for 160 epochs using ADAM optimizer, with a
learning rate of 10−3 and a batch size of 128. The GNN is trained using the same loss as BP-NN. We
utilized data augmentation of rotations and flips.

Simple analytic energy model As an example of a simple analytic energy model, we use the BKS
model to simulate SiO2. The BKS model is a Buckingham-like potential [20–22], commonly used
for studying silicate glasses. The Buckingham form can be defined as:

Uαβ =
qαqβ

4πε0rαβ
+Aαβexp

(
− rαβ
ραβ

)
− Cαβ
r6αβ

+
Dαβ

r24αβ
, (6)

where ~rαβ and Uαβ are the pairwise distance and energy between atoms α and β, qα is the partial
charge of atom α, ε0 is the dielectric constant, and Aαβ , ραβ , Cαβ , and Dαβ are parameters of
the approximate energy model. For the SiO2 system there are only two types of atoms, which
leads to a total of 12 parameters for curve-fitting (for example 3 real parameters are used for Aαβ :
ASi−Si, ASi−O, AO−O. Total energy of an atomistic configuration is then given by the sum of all
pairwise energies Uαβ .

The approximate energy model defined by Eq. 6 is very different from ML models: it only has
12 parameters, and the parameters are not optimized using a well defined training set and gradient
descent. Analytically tractable approximate energy models of this form are often constructed from
expert knowledge of scientists who are extremely familiar with the physical system in question. The
parameters are most often optimized so that simulations of the approximate energy model agree with
various experimental measurements.

Physical systems We use two prototypical molecular systems for our analysis. First we consider
silicon dioxide, SiO2, which is in glass all around us, from cell-phones to windows. Our SiO2 system
has 96 atoms in its unit cell (32 Si atoms and 64 O atoms). We consider DFT, BKS, and BP-NN
energy models on this system. Atomistic configurations are sampled by randomly displacing atoms

3Example code is available as a Colaboratory notebook at:
github.com/google/jax-md/blob/master/notebooks/neural_networks.ipynb

10

https://github.com/google/jax-md/blob/master/notebooks/neural_networks.ipynb


of equilibrium structures in random directions for training and test data, which is a commonly used
sampling method [37, 41].

The other system we consider is silicon (Si) at different temperatures, as simulated by DFT molecular
dynamics. This is an extremely popular system in empirical potentials research that has received
considerable attention in the literature [9, 42, 43, 38]. We construct a dataset using another canonical
sampling method [10, 15] where we sample quantum mechanical molecular dynamics of 64 atoms at
several temperatures (300K, 600K, 900K, and 2000K). Configurations from these trajectories and
their corresponding energies are then uniformly sampled to construct training and test sets. The
total number of configurations collected from DFT molecular dynamics is around 56k, 36k of which
was used for training and validation, and 20k was used for testing. We train a BP-NN and GNN to
approximate the energies of these Si configurations. Note that for both of the Si and the SiO2 systems,
the training and test data are from an i.i.d. distribution.

To investigate the presence of adversarial directions, and their overlap with the force, we experiment
with standard ML architectures and physics simulation tools. All ML models were trained on a single
NVIDIA TESLA P100 GPU. Behler-Parrinello neural network trained in less than an hour, and the
graph neural network trained in four hours.

When sampling training and test configurations by randomly displacing atoms, we sample distortions
from an independent Gaussian distribution in each dimension for each atom, and normalize the L2-
norm of the total distortion. When we calculated the average cosine-angle magnitude of configurations
as a function of energy above local minimum, we used a bin-size of 50 samples.

Quantum mechanical simulations DFT calculations used a projector-augmented wave (PAW)
potential [44]. Exchange-correlation functional employed was by Perdew et al. [45]. Energy cutoff
was 300 eV, and k-point mesh convergence was 0.5 meV/atom. Stress convergence was 0.1 kbar.
DFT calculations took about 6 minutes per sample on 32 CPUs.

Estimating the error due to high cos θadvF In simulating these molecular simulations it is common-

place to use Newton’s laws so that the configuration is governed by ~F = m~̈R where m is the atomic

mass and ~̈R is the second time-derivative of positions. In atomistic simulations, a commonly used
time step is 1 fs (10−15 seconds), which we will use in this section. To evaluate the error due to
the alignment of force and adversarial direction, we will take one simulation step in the direction
of the ~FApp, by moving the atoms for 1 fs with acceleration ~FApp/m. Note that this is similar to a
single step adversarial attack, where the distortion size is determined by Newton’s laws. One main
difference with adversarial attacks is that instead of using the adversarial direction commonly used
in vision research, we will use ~FApp which is naturally used in physical simulations to evolve the
system.

5 Experiments

We now investigate the presence of adversarial directions, and their overlap with the force, for range
of choices for EAcc and EApp. After training the approximate energy model, EApp, we compute its
adversarial direction ~A(~~Rj) using Eq. (3). To evaluate how aligned the adversarial direction is with
the force, ~FApp(~Rj), we compute the cosine-angle between the two vectors,

cos θadvF =
~A(~R) · ~FApp(~R)

|| ~A(~R)|| ||~FApp(~R)||
. (7)

Note that both ~A(~Rj) and ~FApp are 3N-dimensional vectors where N is the number of atoms along
with three spatial directions for each atom. Since our systems have 50 to 100 atoms, the cosine-angle
between two random vectors is close to 0. For each system studied we evaluate the error of the model
and the distribution of cosine-angles. We will see that even well-performing models typically have
high alignment with adversarial directions. Moreover, we will find that the sign of the overlap is
random; this agrees with the observation that the constant C in Eq. (4) will have a random sign.
Additionally, we recall that Eq. (4) will be accurate when the system is near a minimum of the energy.
To validate this approximation and to show that adversarial examples become particularly problematic
near extrema, we also evaluate the average magnitude of the cosine-angle, cos θadvF , as a function of
the energy above the local minimum, ∆E.

11



0 20 40 60
ΔE (meV/atom)

0.0

0.2

0.4

0.6

0.8

1.0

|c
oV
θa
dv
F

|

−1.0 −0.5 0.0 0.5 1.0
cos θadvF

0.0

0.5

1.0

1.5

2.0

P

-380 -370 -360 -350 -340
ED)7 (eV)

-380

-370

-360

-350

-340

EN
N
 (e

V)

-380 -370 -360 -350 -340
ED)7 (eV)

-380

-370

-360

-350

-340

EG
N

N
 (e

V)

0 20 40 60
ΔE (meV/atom)

0.0

0.2

0.4

0.6

0.8

1.0

co
V
θa
dv
F

−1.0 −0.5 0.0 0.5 1.0
cos θadvF

0

1

2

3

4

3

a b c

d e f

Figure 4: Neural networks trained on DFT have adversarial directions aligned with their forces.
BP-NN and GNN is trained on DFT calculations of Si atoms. a) Points represent the energy prediction
of the the labels (EDFT) vs. the neural network predictions for BP-NN (a) and GNN (d). Red dashed
lines denote perfect agreement. Middle column shows the histogram density of cos θadvF for BP-NN
(b) and GNN (e). Right column is the average magnitude of cos θadvF vs. ∆E, the energy above local
minimum, for BP-NN (d) and GNN (f).

5.1 Neural networks approximating DFT

Next, we study the practically relevant task of fitting neural networks on DFT energies. First, we
train the BP-NN on Si configurations (sampled from molecular dynamics, as described in Section 4)
to achieve a test error of 4.9 meV/atom, which is comparable to the reported error of 5-6 meV/atom
on this system by Behler and Parrinello [9]. Fig. 4(a) shows that the prediction of the BP-NN
agree well with the labels on test configurations, however the magnitude of cos θadvF is large for
most configurations (panel (b)). We see that for a significant fraction of the configurations, the
adversarial direction and the ~FApp is perfectly aligned. Fig. 4(c) shows that, as expected, problematic
configurations are found very close to the local minima of the DFT landscape (EAcc). The magnitude
of overlap is smaller for configurations with higher energy.

Next, we train a GNN to see if better architectures have different behavior with respect to adversarial
examples. In Fig. 4(d) we see that the energy predictions of the GNN are more accurate than the
Behler-Parrinello architecture (4.5 meV/atom error vs. 4.9 meV/atom error). However, despite
the improved accuracy, we see that for a majority of the configurations, the adversarial direction
is approximately aligned with the GNN force (panel (e)). The alignment is again strongest for
configurations close to the local minimum, and it goes down with increasing energy (Fig. 4(f)).
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Figure 5: a) EGNN vs. (EDFT) for the Si system (GNN is trained on forces). b): Histogram density
of cos θadvF for test configurations. c) Average magnitude of cos θadvF vs. ∆E, the energy above the
local minimum.

Next, we train a GNN on energies and forces from DFT (see Fig. 5). We see that while training on
forces certainly helps, which is good news, configurations close to the local minimum still have large
magnitude for cos θadvF .
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6 Related Work

Most of the initial research into training ML models as approximate energy functions focused on
simple neural networks [9, 16] or Gaussian proccesses [11]. More recent work has utilized ideas
from graph convolutional networks and message passing neural networks [28, 15, 14, 30].

To our knowledge, adversarial examples or adversarial directions have not been investigated in
physics models before. Adversarial examples have been extensively studied in the deep learning field
of vision [46, 23, 24, 47–50], as described in the Introduction. Performance of deep learning models
was also shown to deteriorate if images are slightly changed by non-adversarial distortions such as
translations, blurring, and contrast changes [51, 52].
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