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Abstract

We explore a self-learning Markov chain Monte Carlo method
based on the Adversarial Non-linear Independent Components
Estimation Monte Carlo, which uses generative models and ar-
tificial neural networks. Applying this method to the scalar ϕ4

lattice field theory in the weak-coupling regime and, we greatly
increase the system sizes explored to date with this self-learning
technique. Our approach does not rely on a pre-existing training
set of samples, as the agent systematically improves its perfor-
mance by bootstrapping samples collected by the model itself.
We evaluate the performance of the trained model by examining
its mixing time and study the ergodicity of generated samples.
When compared to methods such as Hamiltonian Monte Carlo
(HMC), this approach provides unique advantages like speed of
inference and compressed representation of Monte Carlo pro-
posals for potential use in downstream tasks. [1]

Monte Carlo Simulations

A key practical concern in MCMC simulations is the autocor-
relation that exists between Monte Carlo samples. Reducing
the autocorrelation time [2] enables a Markov chain to become
shorter while maintaining the same statistical predictive capac-
ity. Such optimization can be achieved through a tailored design
of the proposal distribution in an MCMC update.

A-NICE MC

Here we examine a general approach for a self-training Markov
Chain Monte Carlo (MCMC) known as Adversarial Nonlinear
Independent Components Estimation Monte Carlo (A-NICE
MC) [3], where a neural network is optimized to minimize the
autocorrelation in a Markov chain:

• Starting from noise, it generates a good sample in a small
number of steps. This is required to reach equilibrium as
quickly as possible.

• Starting from a good sample, it generates another, decorre-
lated good sample in as few steps as possible. This is re-
quired to continue generating good samples once equilibrium
is reached.

The pairwise discriminator

In contrast to more standard GAN implementations, A-NICE
MC uses a discriminator network that jointly scores pairs of
samples, allowing for an estimation of autocorrelation time.

Lattice field theory

We apply A-NICE-MC a classical ϕ4 lattice field theory in two
dimensions. We sample a Boltzmann-type distribution of the
form P (ϕ) ∝ exp(−S(ϕ)), where

SΛ(ϕ) =
∑
x∈Λ

−2κ
D∑
µ=1

ϕxϕx+êµ + (1− 2λ) ϕ2
x + λϕ4

x


with coupling constants κ, λ ∈ R. We choose κ = 0.21 and
λ = 0.022 (weak coupling) for easier comparison with standard
MCMC approaches.

Training procedure

MCMC performance metrics used in this work are the auto-
correlation time or, equivalently, the effective sample size. We
evaluate effective sample sizes on both A-NICE MC chains dur-
ing training.
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Bootstrapping data

The A-NICE MC model trains on its own data which we call
”bootstrapped” datasets:

1. The proposal network is sampled to create a dataset D0.
Samples are biased towards the correct distribution by the
Metropolis-Hastings accept/reject step.

2. Train the network for a preset number of steps.

3. Repeat previous two steps to generate better and better sam-
ples.
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After training we compare discriminator outputs of HMC (as-
sumed ergodic) samples, trained A-NICE samples and random
Gaussian noise. trained discriminator penalizes HMC sam-
ples and A-NICE samples equally, indicating that A-NICE
has been trained to be ergodic. Gausssian noise is penalized
slightly differently (weak coupling) but are distinctly different
from ϕ4 samples.
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As the discriminator optimizes, the difference |DHMC −
DA-NICE| decreases and thus the A-NICE score approaches the
decorrelated HMC score.

Autocorrelation

The autocorrelation function χ for an observable O [2] is com-
monly defined as

χ(t) =

∫ ∞
0

dt′
[
O(t′)O(t + t′)− 〈O〉2

]

Observables

In the above figure, we examine autocorrelation times follow-
ing of the following lattice field theory observables:

• The ”magnetization”: M ≡
〈

1
LD

∑
x∈Λϕx

〉
• The connected two-point function:

G2(x) ≡ 1

LD

∑
y∈Λ

[〈ϕy ϕx+y〉 − 〈ϕy〉 〈ϕx+y〉]

and its momentum-space representation G2(k) ≡∑
x∈ΛG2(x) eik·x =

〈
|ϕ̃k|2

〉
/LD where ϕ̃k is the Fourier

transform of ϕ̃x ≡ ϕx− 〈ϕx〉. Related scalar quantities are
the two-point susceptibility and the Ising energy density

χ2 ≡
∑
x∈Λ

G2(x) ; EI ≡ lim
λ→∞

1

D

∑
µ

G2(êµ) .
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