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The Galaxy Zoo dataset Eliminating redundancy in the data

» 250,000 of the brightest galaxies from the Sloan Digital Sky Survey There is redundancy in the Galaxy Zoo data set, as many galaxies are
were put on a website alongside a tree of questions different transformations of a canonical galaxy image for those particular

» Users logged on to answer questions based on features of the galaxies  features.
such as “Smooth, featured or artefact” or “Bar or no bar”

» The data set consists of the total number of responses for each answer
to each question, and the corresponding galaxy image.
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Is the galaxy simply smooth and rounded, with no
sign of a disk?
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Figure 1:User interface on galaxy zoo

Why semi-supervised learning

Figure 3:Same galaxy image, but viewed at different planes

Equivariant Transformer networks

» Assuming that each image ¢ is a transformation of the canonical image
o* of that type of galaxy. The transformation 7" is governed by its pose
parameters 6.

» When new questions are introduced to the data set, we have zero
responses to that question.

» Galaxy images continues to grow at a rate that is not possible to be
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responses for each image in the Galaxy Zoo data set at the current e want fo predict these pose parameters using a function
response rate. flg) =10 (3)

» We want the function f to have a property that is called self consistency:
f(Ty¢) = f(¢) + 6 (4)

Variational Autoencoders

How do we do this? Each transformation has an associated pose
parameter. For each transformation, we have an associated mapping p

» VAEs learn the distribution of latent parameters of the image p(z|z), and o
that satisfies:

the generative model p(z|2).

k
> Classification can be done from the latent representation which p(Tyx) = p(x) + Z f;ex (5)
eliminates noise from the data and makes training more efficient. i—1
which transforms from the cartesian coordinates to what we called the
P(z[x) canonical coordinates for that image.
! | » We then apply a pose predictive function on the new coordinate system
ample which is self consistent with respect to translation (such as a CNN).
ﬁ_,‘ cassr | > For example, the canonical coordinate system for the rotation
| e transformation is the polar coordinate system. A rotation of angle ¢ in

cartesian coordinates is a translation by 6 in polar coordinates.
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Figure 2:A VAE with a classifier from the latent space

The VAE (green) is trained using the ELBO objective using unlabelled data. 7 _>ﬂ_> g
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Figure 4:ET layer transforms and image and predicts a pose
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Figure 5:VAE using ET layers used to run experiments

» Fully-supervised training consisted of the part above the dotted line in

Figure 5. The objective function of the classifier was updated wrt
weights of the classifier and the encoder.

» Semi-supervised training consistsed of alternately updating the weights

of the VAE wrt the ELBO, and minimising the objective function of the
classifier wrt the classifier and the encoder.

» A third experiment consisted of a two-step procedure of pre-training the

VAE with unlabelled data then fine tuning the classifier weights using
labelled data.

Number of labelled images 100 300 800 1200

Fully supervised 056 031 025 0.24
Semi-supervised, alternating steps of VAE and classifier 0.35 0.24 0.20 0.21
Semi-supervised 2-step training of VAE and classifier 037 028 0.25 0.25

Figure 6:RMSE for semi-supervised and fully-supervised training



