Semi-supervised Learning of Galaxy Morphology using Equivariant Transformer Variational Autoencoders

features.

Mizu Nishikawa-Toomey, Lewis Smith, Yarin Gal Department of Computer Science, University of Oxford

The Galaxy Zoo dataset

- ➤ 250,000 of the brightest galaxies from the Sloan Digital Sky Survey were put on a website alongside a tree of questions
- ► Users logged on to answer questions based on features of the galaxies such as "Smooth, featured or artefact" or "Bar or no bar"
- ► The data set consists of the total number of responses for each answer to each question, and the corresponding galaxy image.

Figure 1:User interface on galaxy zoo

Features or Disk

Figure 3:Same galaxy image, but viewed at different planes

There is redundancy in the Galaxy Zoo data set, as many galaxies are

different transformations of a canonical galaxy image for those particular

Why semi-supervised learning

- ► When new questions are introduced to the data set, we have zero responses to that question.
- ► Galaxy images continues to grow at a rate that is not possible to be classified by humans. It would take 5 years to collate 40 volunteer responses for each image in the Galaxy Zoo data set at the current response rate.

Variational Autoencoders

- ► VAEs learn the distribution of latent parameters of the image p(z|x), and the generative model p(x|z).
- ► Classification can be done from the latent representation which eliminates noise from the data and makes training more efficient.

Figure 2:A VAE with a classifier from the latent space

The VAE (green) is trained using the ELBO objective using unlabelled data.

$$\mathcal{L}(x) = \mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(z,x)] - \mathbb{E}_{q_{\phi}(z|x)}[\log q_{\phi}(z|x)]$$
 (1)

Equivariant Transformer networks

Eliminating redundancy in the data

Assuming that each image ϕ is a transformation of the canonical image ϕ^* of that type of galaxy. The transformation T is governed by its pose parameters θ .

$$\phi = (T_{\theta}\phi^*) \tag{2}$$

We want to predict these pose parameters using a function f:

$$f(\phi) = \theta \tag{3}$$

 \blacktriangleright We want the function f to have a property that is called self consistency:

$$f(T_{\theta'}\phi) = f(\phi) + \theta' \tag{4}$$

How do we do this? Each transformation has an associated pose parameter. For each transformation, we have an associated mapping ρ that satisfies:

$$\rho(T_{\theta}x) = \rho(x) + \sum_{i=1}^{k} \theta_i e_k \tag{5}$$

which transforms from the cartesian coordinates to what we called the canonical coordinates for that image.

- ► We then apply a pose predictive function on the new coordinate system which is self consistent with respect to translation (such as a CNN).
- For example, the canonical coordinate system for the rotation transformation is the polar coordinate system. A rotation of angle θ in cartesian coordinates is a translation by θ in polar coordinates.

Figure 4:ET layer transforms and image and predicts a pose

Equivariant Transformer Variational Autoencoder

Figure 5:VAE using ET layers used to run experiments

Results

- ► Fully-supervised training consisted of the part above the dotted line in Figure 5. The objective function of the classifier was updated wrt weights of the classifier and the encoder.
- ➤ Semi-supervised training consistsed of alternately updating the weights of the VAE wrt the ELBO, and minimising the objective function of the classifier wrt the classifier and the encoder.
- ➤ A third experiment consisted of a two-step procedure of pre-training the VAE with unlabelled data then fine tuning the classifier weights using labelled data.

Number of labelled images	100	300	800	1200
Fully supervised	0.56	0.31	0.25	0.24
Semi-supervised, alternating steps of VAE and classifier	0.35	0.24	0.20	0.21
Semi-supervised 2-step training of VAE and classifier	0.37	0.28	0.25	0.25

Figure 6:RMSE for semi-supervised and fully-supervised training