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Abstract

Generative Adversarial Networks (GANs) are nowadays able to produce highly
realistic output, but a detailed evaluation of GANs results in scientific environment
still remains an open problem. An analysis in [1] suggests that the GANs may
not have good generalization properties even when the training appears success-
ful. Authors in [2] presented a 3DGAN architecture for scientific simulations of
High Energy Physics detectors which reached a high level of precision in terms
of physical quantities. This work expands on the idea presented in [3] and uses
the principle of the birthday paradox to make an estimate of the support size of
the 3DGAN distribution as well as an estimate of the support size of the target
distribution represented by the Monte Carlo data. The results suggest that the sup-
port size of the 3DGAN is substantially smaller than that of the training data while
highlighting, at the same time, the role played by the definition of duplicate events.

1 Introduction

Different types of generative models - variational autoencoders, autoregressive models, generative
adversarial networks (GANs) - were proved to be able to learn complex distributions and produce
realistic samples. The original paper [4] suggests that the GANs can learn any target distribution
if sufficiently large networks, training samples, and computation time are given. However, the theoret-
ical analysis conducted in [1] showed that the training objective approaches its optimum value even
though the generated distribution is far from the target distribution, specifically that the generated
distribution has a low support size.

In [3], the authors proposed a test for estimating the support size based on the birthday paradox.
The birthday paradox states that for a discrete uniform distribution with the support size N , a set of
approximately

√
N samples is needed to encounter duplicates with a probability exceeding 50 %

[5]. The authors used this idea to estimate the support size of generated distributions for various
well established generative models trained on widely used datasets such as CelebA, CIFAR-10 or
LSUN [6, 7, 8]. This experiment provided an empirical evidence for their hypothesis presented
in [1], the support sizes of the generated distributions were rather low, specifically for the models
that produce images of high visual quality. It should be noted however that this procedure depends
heavily on the chosen definition of duplicate events.

The level of desired precision of the generated images depends on the application of the generative
models. Namely in the field of high energy physics (HEP) experiments, precise simulations of particle
transport through matter are requested. The currently used Monte Carlo (MC) techniques possess
a high degree of precision with the theoretical predictions but they are both time and resource
intensive [9]. The LAGAN [10] and CALOGAN [11] models introduce the idea of using GAN for
High Energy Physics shower simulation as two-dimensional images for a simplified calorimeter use
case. Since then, there have been other demonstrations employing deep learning for HEP calorimeter
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Figure 1: Example distributions validating the quality of the GAN generated images [2]. Left to right:
the pixel intensity distribution, the sampling fraction (ratio between the total deposited energy and
the input energy) as a function of the input energy and the image sparsity. GAN results are depicted
in blue; Monte Carlo in red.

simulation [12, 13, 14]. In [15, 2], the authors explored the possibility of training a three-dimensional
convolutional neural network, called the 3DGAN, to simulate the HEP detector response to a particle.
The key point of this approach is the fact that this response can be interpreted as a 3D image.

Despite the number of GAN-based HEP applications, a consistent, somewhat standardised, perfor-
mance validation approach has not yet been defined at the community level. In most cases, the GAN
or, more generally, the generative models’ output is compared to Monte Carlo data in terms of specific
physics-inspired variables. However, an estimation of the generated support space and the identifi-
cation of well-known problems related to GAN training (such as mode dropping or mode collapse)
become even more important, in the context of scientific simulations. By exploring the possibility
of implementing the idea of the birthday paradox for measuring the GAN support size, this work is
intended as a contribution in this direction and one of the few examples (possibly the first to the best
of our knowledge) attempting to give an estimate of the support space learned by a HEP GAN model
and to make a direct comparison to Monte Carlo.

Firstly, the 3DGAN is briefly introduced. Then the implementation of the birthday paradox-based
test is described, followed by the results of this test. Subsequently, a discussion on the results and
possible improvements is presented. The last section contains a reflection on a possible broader
impact of this work.

2 The 3D convolutional GAN

The 3DGAN is a 3D convolutional GAN architecture that simulates the calorimeter’s energy response.
The initial implementation of the 3DGAN [15] admitted conditioning of its input only by the primal
energy Ep of the particle entering the detector and it also assumed a 90◦ angle θ between the direction
of the particle and the detector surface. In [2], the 3DGAN is modified to produce images of higher
granularity and the training is conditioned using both the incident angle θ, in the 60◦ − 120◦ range,
and the primal energy Ep, in the 2 − 500 GeV range. Each event in the dataset is represented by
a three dimensional 51× 51× 25 pixelized image and information about the primal energy Ep and
the incident angle θ. The loss function was also modified to include these new features as well as
physics-based constraints. Details on the architecture of the 3DGAN generator and discriminator
networks can be found in [2].

3DGAN is trained on data simulated using the GEANT4 toolkit [16]. These are also the data that
the images generated by the 3DGAN need to be compared to. In [2], the 3DGAN was compared to
the GEANT4 data in terms of several physics quantities, such as the sampling fraction (ratio between
the total deposited energy and the original particle energy), the image sparsity, as well as for the pixel
intensities, which are reproduced in figure 1. As shown in figure 2, good agreement was also found
for the energy shower profiles along the x, y, and z axes for different angles.

3 Birthday paradox test implementation for the 3DGAN

The birthday paradox introduced in the first section assumes a discrete uniform distribution over
N possible outcomes. However, the GAN distribution is continuous so the occurrence of exact
duplicates is not expected. Similarly to the authors in [3], we look for pairs of samples that are
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Figure 2: Shower shapes along the axes for a sample with the primal energy Ep = 100± 2.5 GeV
and the angle θ = 90◦ ± 2.5◦. (blue) GAN. (red) Monte Carlo.

highly similar in terms of a predefined metric on selected features. Furthermore, the output images
of the 3DGAN are conditioned by the primary particle energy Ep and the incident angle θ that vary
over a given range. For the purposes of the following analysis, we may focus only on events with
the primal energy Ep = 100± 2.5 GeV and the angle θ = 90◦ ± 2.5◦.

To perform the support size estimation using the birthday paradox idea, a definition of a pair
of duplicates is needed. This paper includes two possible definitions. The first one is based on high-
level features, namely the particle shower shapes along axes and the deposited energy. The second
definition adds the Structural Similarity Index (SSIM) [17] as a representative of a pixel-based metric
to the high-level features selection.

At first, a pair of duplicate images was defined using the particle shower shapes along the axes x,
y, and z, an example is depicted in figure 2: these quantities represent the energy pattern deposited
in the calorimeter sensors along the three directions. The difference between the shower shapes
of two samples was measured by the Jensen-Shannon divergence

DJS (P,Q) =
1

2
DKL

(
P,
P +Q

2

)
+

1

2
DKL

(
Q,

P +Q

2

)
(1)

where DKL (P,Q) = P · log
(

P
Q

)
−P +Q refers to the unnormalized Kullback-Leibler divergence.

In the next step, a subset of 5000 samples from the GEANT4 dataset was taken and the divergences
between all samples in this subset were calculated for energy distribution along all three axes.
Subsequently, the α-quantile of the computed divergences was found for each direction. Finally, two
samples are marked as duplicates if the divergences of the energy distributions along axes are below
the α-quantile values for all three axes.

To generate an estimate of the support size, the divergences between s randomly selected samples
are calculated and it is examined if there is at least one pair of duplicates in this subset. The ran-
domized selection of s samples was repeated 1000 times for both GEANT4 and GAN data to obtain
the probability of encountering duplicates in a subset of size s. Figure 3a depicts the probabilities for
the GEANT4 and the GAN generated data with α = 0.02. The probability of encountering duplicates
exceeds 0.5 for a subset of 20 samples generated by the GAN which indicates that the support size is
≈ 400. To reach the 0.5 probability for the GEANT4 data, more than 200 samples are needed.

The divergences between the shower shapes reflect mainly the spatial information about the energy
deposition. An additional restriction of the absolute difference between the total energy deposited
in the calorimeter sensor was included. The threshold for this measure of dissimilarity between
two samples was determined using the GEANT4 data in the same manner as the thresholds for
the divergences between the shower shapes. The probabilities of finding a duplicate in a subset of
size s are depicted in figure 3b. The additional criterion of the total deposited energy significantly
changed the results. The number of the GAN generated data needed to achieve the 0.5 probability
increased to 80 which yields the number ≈ 6 400 as an estimate of the support size of the GAN. For
the GEANT4 data, the probabilities are not approaching the value of 0.5 for the examined subset
sizes.

The previous approach used only high-level physical features to assess the similarity of two sam-
ples. Both the choice of features and the threshold have major influence on the estimated support
size. However, the samples have teh form of a 3D image, so we introduce a pixel-based metric,
the Structural Similarity Index (SSIM). The SSIM ranges from 0 to 1 and satisfies SSIM (x, y) = 1
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(a) Threshold definition based on
shower shapes.
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(b) Threshold definition based on
shower shapes and the total de-
posited energy.
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(c) Threshold definition based on
shower shapes, total deposited en-
ergy and SSIM values.

Figure 3: Probabilities of encountering duplicates for sets of different sizes (denoted as subset size).
The first subset size for which the probability of 0.5 (red dashed line) is exceeded gives the estimate
of the support size.
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Figure 4: Histogram of the SSIM values for pairs of images from the GEANT4 dataset and the GAN
generated dataset. The dashed line marks the 0.98-quantile computed on the GEANT4 data.

if and only if x = y. Based on the results presented in [2], the value of the SSIM parameter L that
represents the dynamic pixel range was set to L = 10−4. Figure 4 shows the SSIM values calculated
for random pairs of images in the GEANT4 and GAN datasets. The dashed line, representing
the 0.98-quantile computed on the GEANT4 data, shows how most of the GAN pairs have an SSIM
above the threshold, thus they appear more similar than the GEANT4 pairs in terms of the SSIM.
Nevertheless, we included the SSIM-based selection in the definition of duplicate events. Results
are shown in figure 3c: since most of the GAN pairs have SSIM above the SSIM-based threshold,
the effect of the SSIM criterion on GAN data is negligible, while slightly reducing the corresponding
probability for GEANT4 samples.

4 Results

Although preliminary, these results clearly show that the 3DGAN produces images that are signif-
icantly more similar in terms of the shower shapes and the total deposited energy than the images
produced by the MC simulation (GEANT4). However, they also suggest that the estimate of the subset
size depends strongly on the way the duplicates are defined.

Figure 5 shows the two-dimensional energy projections of the two closest duplicates in the GAN
sample, selected according to the 0.02-quantile thresholds. The two events clearly exhibit differences,
in particular in the distribution of small energy deposits scattered at the edges, and it is likely
that the two events would not be flagged as duplicates by a visual inspection. This fact suggests
that the definition of duplicate events is a choice to be made on a use-case basis, depending on
the simulated sample specific requirements (in terms of detector resolution, for example).
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Figure 5: 2D energy shower projections of the 2 closest duplicates, selected according to the 0.02-
quantile thresholds.

5 Conclusion and broader impact

The definition of common validation strategies, agreed at the community level, represents an important
step toward bringing generative model prototypes to production-level quality and speeding their
integration in the experiments simulation frameworks. An estimation of the generated support space
and the identification of well-known problems related to GAN training (such as mode dropping or
mode collapse) are even more important in the context of studies investigating the possibility to
replace Monte Carlo simulation with generative models for High Energy Physics applications.

In this work,we presented the results of a study estimating the size of the generated support space
of 3DGAN, a model trained to reproduce high-granularity calorimeters output. We have applied
the birthday paradox test, exploring different practical implementations of the duplicate-events
definition, based on high-level variables (such as energy deposition profiles) and pixel-wise quantities
more commonly used for image analysis (such as the SSIM). Our findings highlight a significant
difference between the 3DGAN and the target distribution support sizes. We are continuing our
investigations in order to better characterise this support size difference and understand how it could
affect the practical use of GAN generated samples in experimental applications. At the same time,
we want to draw attention to the strongest limitation of this approach, namely choosing the duplicate-
events definition, which has a large impact on the test result and, once more, proves the challenges
related to validating generative models output.
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