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Abstract

Advances in both scientific computing and machine learning have led to techniques
to improve, replace, or speed up methods to solve problems in the physical sci-
ences. For many nonlinear systems, traditional methods of calculation often carry
a heavy computational burden due to complex dynamics, physical constraints, or
multi-scale behavior. We introduce a machine learning approach to vastly decrease
computational complexity of modeling spatiotemporal systems, leveraging prior
physical knowledge of the system with flexible reduced representations of the un-
derlying dynamics. We demonstrate this technique on three-dimensional turbulent
fluid flow, wherein the modeling of such systems continues to be a formidable
problem for engineers and physicists. We merge convolutional layers with a Neural
ODE approach to form a differentiable ML architecture to build a system model.
Here, we test the applicability of this method to model homogeneous isotropic
turbulence, as well as the effect of different architectural elements on turbulence
statistics. We find that the largest scales of the flow, which are relevant to engi-
neering applications, are well-approximated and some dynamic characteristics of
interest are maintained.

1 Introduction

The reproduction of spatio-temporal dynamics by physical models, often governed by partial dif-
ferential equations, is critical for a variety of engineering applications. Despite many decades of
progress with scientific computing and numerical methods, solution accuracy has to be sacrificed to
model realistic systems. Turbulent fluid flow, which governs many practical engineering applications,
from earth sciences to biology, is an example of this trade-off. The challenge lies in solving the
governing Navier-Stokes equations to an appropriate degree of accuracy with computational fluid
dynamics (CFD) techniques and current computational capabilities. Among several strategies in CFD,
Direct Numerical Simulation (DNS) of the equations aims to fully resolve all scales of the flow, thus
leading to extremely high-fidelity solutions. However, computational complexity of DNS limits its
application to simple flow configurations which are typically oversimplified for general engineering

Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada.



or geophysical applications. For most practical engineering problems, resolving only a subset of the
larger scales is necessary to gain meaningful insight. To this end, numerous models informed by
known physical laws have been developed to model turbulent interactions while accurately resolving
only large scales of interest.

While CFD techniques rely on known physics, empirical fitting, and mathematical derivations,
data-driven techniques offer an alternative approach with enhanced flexibility and richer model
representations. Despite being a nascent area of research, ML in CFD has seen broad interest in the
community. Approaches have focused on integrating neural networks into existing CFD algorithms
[L} 2 31 4], improving predictive capacity [S] and generalization by modeling intermediate quantities
used in flow simulations [6]. Alternate approaches include the task of whole field prediction, in
2D [7, 18] and 3D [9], using partial observations [10], and with physics-informed deep learning
architectures [[11}[12]. These data-driven models have shown significant promise with their ability to
improve or efficiently replace CFD methods. In parallel, advancements in deep-learning algorithms
have opened new doors for their applicability towards scientific research. Chen et al. popularized the
use of Neural ODEs (NODEs), which permit differential equations to be easily integrated within a
deep-learning framework [13]. The ability to adapt neural networks to include differential equations
has far-reaching implications for modeling physical phenomena.

1.1 Our Contributions

Inspired by the underlying physics, we investigate the use of NODEs to model spatiotemporal
dynamics. While smaller NODEs have been used successfully in various implementations such as
reduced-order models or other parameterized differential equations [14], we explore modeling whole
field dynamics with this framework. In this work, we develop a data-driven, reduced order model to
forecast three-dimensional turbulence and show the effect of kernel size and compression ratios on
the predictive ability of the latent space model. As we are interested in fluid dynamics applications,
we take inspiration from existing CFD techniques in constructing our model architecture and include
components to force physical solution (e.g. mass balance constraint) outputs.

2 Physical description of the problem

To evaluate our approach with regards to fluid dynamics, we consider an idealized case of turbulent
flow — homogeneous isotropic turbulence. The convolutional neural ODE method stems from the fact
that we wish to model the temporal dynamics of the system. For an incompressible fluid, there are two
governing equations, a momentum balance and a mass balance, shown here in their non-dimensional
form: 9 )
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where u is the velocity vector, defined {u, v, w}, p is the pressure, f is a forcing function, and Re is a
Reynolds number, a non-dimensional flow parameter which broadly describes the intensity of inertial
forces over viscous ones. We can see from the momentum balance that the dynamics of the velocity
field are both autonomous and a function of local spatial gradient information of the field. Given a
spatially discrete field, then, we can construct an ODE system to describe the dynamics using a neural
network. We note that making this neural network a convolutional neural network will incorporate the
spatial information (derivatives) necessary to accurately approximate the true function. We construct
the problem such that the model is provided with an initial snapshot of the flow. The continuous
dynamics are forecasted with the model, and a series of temporal snapshots within a specified time
window are saved and analyzed with regards to the ground truth data. We compare results using a
series of three important turbulent statistics — energy spectra, velocity probability density functions
(PDFs), and turbulent kinetic energy (TKE). The turbulent kinetic energy is defined as one half of the
sum of the mean-square fluctuations of the velocity components:

=5 ((u) + (%) + (%) . 2)

3 Machine Learning approach

3.1 ConvAE + NeuralODEs

Due to the combined multi-scale and non-linear behaviour of the Navier-Stokes equations, discretized
numerical solutions to are subject to unfavorable scaling of computational complexity with
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Figure 1: Schematic of the overall model architecture. Initial conditions are given and encoded into a latent space.
Augmented channels are concatenated and the dynamics are forecasted through the neural ODE approximator.
The sequence is decoded and the divergence-free condition is enforced through the last layer.

respect to the Reynolds number, where computational complexity can be shown to scale with Re®/4
[15]. To improve computation tractability, much work has been done in reduced order modeling of
dynamical systems. Proper orthogonal decomposition, often used with fluid flows, takes a statistical
approach, projecting the data onto a linear subspace comprised of dominant modes [[16]. The idea of
a latent space representation is common in many fields, including computer vision. Convolutional
autoencoders (ConvAE) have been used for tasks like image compression or feature extraction, both
of which closely parallel our goal of a rich reduced representation of our turbulent flow field. We take
advantage of this technique to reduce our snapshots into a much smaller latent space. The dynamics
of the system can then be performed on the latent representation, easing computation. Using a latent
space in conjunction with Neural ODEs is not new and has been used successfully for modeling many
other dynamical systems [17].

The design of our ConvAE + Neural ODE system is sketched in fig. Here, the latent space
dynamics ‘fl—? are approximated using a 4 layer convolutional network with dropout prior to the last
layer. We investigated multiple kernel sizes and settled on 7 for the first layer and 5 for the other three
based on balancing computational training cost with results quality. The computation time scales
roughly equivalently with the number of parameters in the Neural ODE, which itself scales as k2,
where k is the kernel size. The encoder is a 2 layer convolutional network, with 1 layer of stride 2 to
downsample the output. The decoder shares this architecture with convolutional transpose layers. We

employ a compression ratio of 6, which is the size of the original data relative to the latent space.

3.2 Dataset and Additional Elements

The dynamic model is trained with high-fidelity solutions to the three-dimensional Navier-Stokes
equations, defined by [T] Solutions for a triply-periodic domain are obtained by a standard Fourier
psuedo-spectral method [c.f.[18]]. The system is forced at low-wavenumbers to keep the total energy in
the system constant [[19]. The resulting data are statistically stationary with approximately stationary
energy spectra. Our training, validation and test datasets span 100 integral time scales 7, with a
temporal sampling rate of approximately 7/100. The turbulent Reynolds number, Rer = e?/(ve)
with e the turbulent kinetic energy dissipation rate, is approximately 380, and the flow remains fully
turbulent for the duration of the solution. The solutions are discretized with 64 collocation points in
each direction.

We incorporate a few additional architectural elements to improve prediction and enforce physical
constraints. As the dataset includes periodic boundary conditions, we impose this constraint by
padding inputs to all convolutions circularly. We also employ the augmented neural ODE approach
[20] to the latent dynamics to increase flexibility and ease computation of ODE. This is accomplished
by concatenating channels of zeros to the output of the encoder, with the predicted results projected
back into the original latent space. Lastly, we apply a spectral projection layer to the final model
output to enforce the divergence-free field condition required for a constant density fluid [21].

4 Results

4.1 A-posteriori statistical analysis

We analyze the predictive capabilities of our model by examining turbulent energy spectra over a
window of one integral time scale. The energy spectrum decomposes the turbulent kinetic energy
in the flow as a function of wavenumber, where large and small eddies correspond to low and high
wavenumbers respectively. As this system is chaotic, we are interested in statistical assessments of
performance as opposed to local measures such as RMSE. We look at the PDFs of the spatial velocity



103

102
3 )
o 1 : o
10 —— DNS - =0
== Prediction - =0 \“o 0
0
10 — DNS-1=1 10 —— DNS Time Average . -
== Prediction - t=1 == Prediction Time Average
10-1 101
10° 10! 100 10!
k k

Figure 2: Both plots show the energy of the flow as a function of wavenumber. Left: Two snapshots corresponding
to the initial and ending time steps are shown. The vertical line represents the compression ratio of 6 defined
by the latent space size. Right: The energy spectra averaged over the entire time window is shown. Low
wavenumbers show better agreement with DNS, which are sufficient for many practical flows.
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Figure 3: Distributions of the velocity gradients in the flow at initial and end temporal snapshots. Predictions
exhibit tighter distributions, but they are consistent over time.

gradients at two snapshots, shown in fig. [3] which highlight the performance at the small scales of
the flow. From the spectra, this approach models the large scales of the flow very well, shown in fig.
[2] with increasing losses at higher wavenumbers. We note that for many engineering applications,
resolving these largest scales is often sufficient to realize dynamics of interest for engineering or
geophysical problems [15]. Both the velocity PDFs and the spectra plots indicate that the two do not
vary appreciably over time, which is consistent with stationarity imposed in the training dataset.

We can also calculate the average turbulent kinetic energy in the flow over time, simply the integral
under the curve of the energy spectra, to gain insight into how the model behaves over time. For
this dataset, we expect to see constant energy. While there is a decrease in kinetic energy for the
predictions initially, we eventually see the kinetic energy approach an approximately stationary state.

4.2 Parametric Studies

Next, we compare these results with several other model architectures. Fig. []shows the energy spectra
of a model with a larger compression ratio of 24. Again, we see reasonably good approximations of
the large scales, but there is more substantial deviation and irregularity at the small scales and the
model exhibits considerably less stationarity, indicating instability.

Lastly, we see significant correlation between the kernel size of the convolutional neural ODE and
the resultant average TKE over time. From fig. [ although every model under-predicts the true
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Figure 4: Left: Evolution of the kinetic energy in DNS and model flows. There is an initial loss of energy
in the prediction, but it remains constant afterwards. Center: Energy spectra of a model with a much higher
compression ratio of 24. The spectra are more variable over time, and contain artifacts from the compression at
high wavenumbers, which is why there appears to be some agreement in the range k ~13-20. Right: Average
kinetic energy of 4 models with varying convolutional kernel sizes. Larger kernel models seem to approach the
ground truth asymptotically.



energy, increasing the kernel size allows the model’s TKE to approach the true value. As the kernel
size corresponds to the order of spatial discretization scheme, we find that higher order schemes are
particularly better at capturing the kinetic energy of the flow, which is a function of the magnitude
of velocity fluctuations. The kernel size and overall receptive field of the neural ODE can also be
connected the the length scales that are represented in the dynamics. Small receptive fields will be
limited to local interactions while larger fields can include larger scale interactions. Incorporating an
increased range of interactions effects better performance.

5 Conclusions

In this work, we have proposed a novel methodology for forecasting complex nonlinear spatiotemporal
dynamics through purely data-driven methods. We use a trainable encoder-decoder pair to transform
the field data into a latent space that retains the spatial nature of the data and solve the transient
problem on this space using standard ODE methods. The governing dynamics of the latent space are
approximated using a convolutional neural net. We find that this approach is able to capture important
details of the flow, namely the large-scale dynamics, and produces stationary sequences in line with
the physics of the problem. We also find convolutional network details, both the encoder-decoder and
the dynamics estimator, have a significant impact on the results, informing future developments in
this field.

6 Broader Impact Statement

This work introduces a data-driven method for learning turbulent flow dynamics using high-fidelity
simulation data. Incorporating machine learning techniques into scientific computing has largely
focused on balancing computation accuracy and speed, and in the proposed approach, we aim to
replace traditional, computationally-intensive numerical simulations with a fast ML model. We show
that while there is some loss in fidelity, our models are suitable for many engineering problems, which
make them an ideal candidate to include in workflows that require rapid fluid dynamics calculations,
such as down selection and design optimization. While our present work demonstrates this for
this particular dataset, the results indicate a promising pathway to address challenges with current
numerical techniques for non-linear spatio-temporal dynamics.
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