Carnegie Velon University

Learning non-linear spatio-temporal dynamics with convolutional Neural ODEs Varun Shankar¹, Gavin D. Portwood², Arvind T. Mohan², Peetak P. Mitra³, Christopher Rackauckas⁴, Lucas A. Wilson⁵, David Schmidt³, Venkat Viswanathan¹

Motivation

- Turbulent flow modeling is still challenging • Multi-scale, non-linear, non-local
- Turbulence models to approximate the small scales
- Still expensive for many practical applications
- •Can we use physics-informed data-driven approach to learn flow dynamics
 - Goal: model that is much cheaper than conventional techniques
- Retain important features of interest

Background

Governing Equations

$\partial \mathbf{u}$	-1 $\nabla^2 \cdot \nabla \cdot \nabla \cdot \mathbf{f}$	
$\frac{\partial t}{\partial t} + (\mathbf{u} \cdot \mathbf{v})\mathbf{u}$	$= \frac{1}{Re} v^{-} \mathbf{u} - v p + \mathbf{I};$	V

 Approximate 	$\partial \mathbf{u} = f(\nabla \nabla)$
dynamics of	$\frac{\partial t}{\partial t} = f(v),$
discretized velocity	da
field with neural	$\frac{d\mathbf{u}}{d\mathbf{u}} = a_{\mathbf{u}}(\nabla$
network	$dt = \frac{3000}{2}$

Machine Learning Concepts

 Neural ODE Derivative approx. w/ NN Backwards ODE to calculate parameter gradients 	$\frac{d\boldsymbol{u}}{dt} = dt$
 Convolution gradients 	
• Dynamics are a function of	$d^2\phi \sim \frac{\phi_{i+1}}{\phi}$
spatial grads	$\frac{1}{dx^2} \approx$
• We already have a tool for	
calculating this	

• g_{θ} is a CININ

¹Carnegie Mellon University, ²Los Alamos National Laboratory, ³University of Massachusetts, ⁴Massachusetts Institute of Technology, ⁵Dell Technologies

