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Motivation

* Turbulent flow modeling is still challenging
 Multi-scale, non-linear, non-local

* Turbulence models to approximate the small
scales
» Still expensive for many practical applications

*Can we use physics-informed data-driven
approach to learn flow dynamics

* Goal: model that is much cheaper than
conventional techniques

* Retain important features of interest
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Machine Learning Concepts
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* Backwards ODE to calculate E -
parameter gradients

* Convolution gradients
* Dynamics are a function of d* ¢ _Piv1 — 20+ Pig

spatial grads dx2 Ax2
* We already have a tool for
calculating this /
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Methods

Overall Architecture
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Dataset and Metrics

* Homogeneous Isotropic
Turbulence
* Close coupling of scales
* Incompressible
* Forced
e Stationary

* Energy spectra

 Function of
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* Velocity PDFs
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* Kinetic energy

* 12 RMS of velocity
fluctuations
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Results
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*Energy spectra: good agreement at low
wavenumbers =2 large eddies

» Stationarity observed across snapshots (spectra,

— DNS - T=]
- =  Prediction - t=] ® Pred
0~ v . 10~} - . — v .
0.00 0.25 050 0.75 100 10° 10! 5 7

t/t " Kernel Size

| === Pred

* Left: kinetic energy over 1 integral time scale
* Underpredicts true value
» After initial loss, TKE stabilizes to constant

* Mliddle: spectra snapshots for model with
greater compression ratio (smaller latent space)

* Poorer agreement, artifacts at the highest
wavenumbers

* Right: average energy for various ConvNODE
kernel sizes
* Kernel size related to “ditferencing order”
* Computational costs and tradeoffs

Conclusions

*ConvNODE architecture paired with latent
space encoder/decoder can express large-
scale turbulent dynamics

*Stationarity and stability observed in
predictions

*Compression ratio and neural ODE kernel
size identified as parameters that impact
energy spectra and avg. energy
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