
Real-time parameter inference in reduced-order �ame models with heteroscedastic Bayesian neural
network ensembles

Background
I Estimating unknown model parameters with uncertainties from observed

data can be an expensive inverse problem.
I Neural network-based amortized inference techniques learn surrogate of

the approximate posterior p(\ |z), can be rapidly evaluated.

The G-equation model

Positive feedback in interactions between flames and acoustic waves can
result in devastating thermoacoustic instabilities in jet or rockets engines.

The G-equation is a kinematic reduced-order model that describes flame
response to acoustics. It models the flame as an infinitely-thin front
propagating into unburnt gases at a fixed speed sL. The flame front is
defined as the G = 0 contour of the two-dimensional time-varying G-field
G(x, y, t).
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Any flame dynamics that can be generated by the G-equation may be
uniquely specified by a set of 6 parameters ) which we need to infer from
experimental observations: K , na, Mk, va, St and V .
Ensemble Kalman filter suggested in the literature [Yu et al.] takes
O(hours) and needs a long sequence of observations to converge to a
parameter estimate; can converge to bad local optima.

Tool: heteroscedastic Bayesian Neural Networks

We assume that the posterior over parameters ) given observations
z, p() |z) can be modelled as a Bayesian neural network - (z;w) with
heteroscedastic Gaussian aleatoric uncertainty 2 (z;w). The
epistemic uncertainty of the Bayesian surrogate detects flame
observations that are either not within the parameter range of the
training dataset or cannot be modelled by the G-equation.

The size of the dataset calls for scalable approximate inference
techniques for training the neural network. Here we use
approximately Bayesian ensembling using randomized maximum a
posteriori (MAP) sampling [Pearce et al.].

Data: experiments

Our apparatus has a premixed laminar Bunsen flame inside an
enclosure, with an optical access window for a high-speed camera. A
loudspeaker is mounted upstream of the flame for acoustic forcing.

Experiments were performed at di�erent fuel compositions
(methane: ethene ratios), flow rates, excitation frequencies (250 - 450
Hz) and excitation amplitudes.
Thresholding is applied to detect the flame front. We divide the
domain vertically into 90 horizontal strips and compute the flame
area corresponding to the flame segment it contains. Each frame is
thus converted into a 90-dimensional vector of flame areas. 10
successive frames from a video recording are stacked to form an
observation zi.

Data: simulations
For the simulation dataset, we sample from the prior P () ), assumed uniform
within the hyper-rectangle defined by bounds 0 ≤ K ≤ 2.5, 0 ≤ na ≤ 1.0,
0.02 ≤ Mk ≤ 0.08, 0.0 ≤ va ≤ 1.0, 0.5 ≤ St ≤ 125.0, 2.0 ≤ V ≤ 10.0 and
0.08 ≤ fs ≤ 0.20. For each sample, the G-equation is solved using LSGEN2D
and the solution is time marched until a limit cycle is reached. Simulated
flames then undergo the same data pre-processing steps as the experimental
flames to create a dataset with 2.4 million simulated flame observations.

Results
Results on the test set of simulated observations (Figure 3) indicate that
accurate estimates of G equation parameters are recovered by the neural
network. The correlation coe�icient d between true and predicted
parameter values are 0.982, 0.994, 0.971, 0.993, 0.976 and 0.990 for K , na, Mk,
va, St and V , respectively. Estimates of parameter uncertainty are also
well-calibrated.

We use the trained network to predict parameter values for 10 experimental
flame videos and re-simulate the flames using predicted parameter
estimates. The re-simulated flames match the dynamics of the real flames
closely.

Conclusions
I Heteroscedastic Bayesian neural network ensemble used to calibrate parameters of the G-equation, a reduced-order model for predicting the acoustic response of premixed flames.
I Trained and tested on millions of simulated flame videos, G-equation parameters can be accurately recovered with uncertainties for simulation data.
I Applied to experimental high-speed video footage of acoustically excited flames to recover parameters accurately, in real-time, from very short sequences of flame observations.
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