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Introduction

Dark Matter present in the Large-Scale Structure of the Universe is
invisible, but its presence can be inferred through the weak
gravitational lensing effect it has on the images of far away galaxies.
By measuring this lensing effect on a large number of galaxies it is
possible to reconstruct maps of the Dark Matter distribution on the sky.
This, however, represents an extremely challenging inverse problem
due to missing data and noise dominated measurements. In this
work, we present a novel methodology for addressing such inverse
problems by combining elements of Bayesian statistics, analytic physical
theory, and a recent class of Deep Generative Models based on Neural
Score Matching.

Our approach

Our approach allows to do the following:

1. Make full use of analytic cosmological theory to constrain the 2 point
statistics of the solution.

2. Learn from cosmological simulations any differences between this
analytic prior and full simulations.

3. Obtain samples from the full Bayesian posterior of the problem for
robust Uncertainty Quantification.

I We present an application of this methodology on the first
deep-learning-assisted Dark Matter map reconstruction of the
Hubble Space Telescope COSMOS field.

Weak Gravitational Lensing

ε = εi + γ with < εi >= 0

=⇒ < ε >= γ

Bayesian Inverse problem

Shear map γ and convergence map κ are related through the
Kaiser-Squires (1993) transformation:

γ = MTPF∗κ + n, n ∼ N (0, σ2)

I It is an ill-posed inverse problem because of missing data and noise
corruption.

I We aim to provide all the possible convergence map κ for a given
observed ellipciticy map ε, thus estimate the posterior distribution:

p(κ|ε,M)︸ ︷︷ ︸
posterior

∝ p(ε|κ,M)︸ ︷︷ ︸
likelihood

p(κ|M)︸ ︷︷ ︸
prior

I The likelihood term p(ε|κ,M) encodes our physical understanding of
the forward process that leads to the observation, given a set of
cosmological parametersM.

log p(ε|κ,M) ∝ −‖M(γ − TPF∗κ)‖2
Σn

I The prior term p(κ) encodes prior knowledge on the convergence map,
given by analytic cosmological theory and learned on simulations.

Prior learning with Denoising Score Matching

I Prior on high dimensional images can be modeled by learning the
gradient of its log probability ∇x log p(x), which is called the
score function [1].

I Given a signal x ∼ p, its noisy version x ′ = x + n, and
pσ2 = p ∗ N (0, σ2), an optimal denoiser r? is related to the score
function as [2], [3]:

r?(x ′, σ) = x ′ + σ2∇x log pσ2(x ′)

Hybrid prior

I We assume that the matter density field is gaussian at large scales.
Then it is fully characterised by its 2 point statistics.

pth(κ) =
1

√
det 2πS

exp

(
−

1

2
κ†S−1κ

)
with S diagonal in Fourier space. Would yield only Gaussian constrained
realisations or behave as a Wiener filter if the MAP is the target.

I Decomposition of the score of the full prior p(κ):

∇κ log p(κ)︸ ︷︷ ︸
full prior

= ∇κ log pth(κ)︸ ︷︷ ︸
gaussian prior

+ rθ(κ,∇κ log pth(κ))︸ ︷︷ ︸
learned residuals

Sampling from score function

MCMC procedures (Langevin Dynamics, Hamiltonian Monte Carlo) only
depends on the gradient of the log distribution.

x t+1 = x t +
1

2
ε∇x log p(x t) +

√
εw , w ∼ N (0, I )

Annealing is used to avoid difficulties due to low density regions
between modes. The MCMC updates are computed using a
Gaussian-convolved version of the target density

σ2 gradually annealed to low temperatures and the chain progressively moves towards
a point in the target distribution. σ1 > σ2 > σ3 > σ4, pσ2(x) =

∫
ptarget(t)N (x|t, σ2I )

Results

I Training and testing on the MassiveNus suite of simulations [4].
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I High quality mass map reconstruction from real survey [5].

149.6149.8150.0150.2150.4150.6150.8
ra

1.6

1.8

2.0

2.2

2.4

2.6

2.8

de
c

0.75

0.95

0.90

0.55

0.85

0.85

0.88

0.53

0.22

0.35

0.90
0.35

0.93

0.37

0.800.73

0.340.95

0.37

Random Posterior Sample

149.6149.8150.0150.2150.4150.6150.8
ra

0.75

0.95

0.90

0.55

0.85

0.85

0.88

0.53

0.22

0.35

0.90
0.35

0.93

0.37

0.800.73

0.340.95

0.37

Kaiser-Squires Reconstruction

149.6149.8150.0150.2150.4150.6150.8
ra

0.75

0.95

0.90

0.55

0.85

0.85

0.88

0.53

0.22

0.35

0.90
0.35

0.93

0.37

0.800.73

0.340.95

0.37

Posterior Mean
Dark Matter map reconstruction

of HST COSMOS survey. We

compare a random sample of the

posterior, the posterior mean

and KS reconstruction. X-ray

clusters and their redshifts are

indicated in white.
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