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Abstract

Fermi–LAT ’s measurement of excess gamma-rays emanating from the Galactic
center has sparked debate as to the source of this unexpected signal. Dark matter
annihilation has emerged as a potential explanation, but confirming this hypothesis
requires a comprehensive understanding of conventional gamma-ray sources. We
evaluate and compare several machine learning approaches to accurately reconstruct
13CO interstellar gas concentration maps, an important indicator for the primary
source of gamma-rays. We apply recent advancements in machine learning to
estimate these skymaps via deep neural networks and Gaussian processes. This
first attempt at employing image reconstruction techniques for modeling the Milky
Way gamma-ray background present an important step towards eliminating known
gamma sources and uncovering the nature of the Fermi–LAT excess.

1 Introduction

Experimental data indicates that dark matter constitutes the majority of the mass in the Universe;
however, its nature is not yet understood. Extensions to the Standard Model of particle physics
predict the existence of weakly interacting particles that can annihilate, or decay, into gamma-rays.
This electromagnetic debris is a potential messenger of dark matter annihilation, and, if detected,
would provide valuable insight into the nature of dark matter. However, this search is limited by our
incomplete understanding of gamma-ray emissions from conventional astrophysical processes.

∗These authors contributed equally.

Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada.



Figure 1: Left: An example of a vertical and a horizontal patches of CO map as the inputs of the
Gaussian Process. Right: An example of a patch from the CO map use by convolutional neural
network to predict the center of the corresponding patch in a 13CO map.

The Fermi Large Area Telescope (Fermi–LAT ) is a gammay-ray telescope in low-earth orbit per-
forming a survey of gamma emissions in the universe. An excess in the Fermi–LAT gamma-ray
observations of the Galactic center was first claimed by Goodenough and Hooper [17, 20], and, since
then, numerous other analyses have confirmed its presence ([2, 1, 12, 15, 5, 4]). A striking feature of
this emission is that its spatial morphology is consistent with annihilating dark matter. However, due
to our incomplete understanding of conventional gamma-ray sources, the excess cannot be precisely
characterized. Alternative explanations for the observations have been proposed, with the leading
one attributing the signal to a collection of pulsars ([2, 1, 23]). The Fermi–LAT gamma-ray excess
remains a debated topic. [22, 13].

One crucial direction into settling this debate is to better characterize the contribution of other gamma
emitters. An accurate baseline would highlight any measured excess that cannot be attributed to
known sources. The brightest contribution to the gamma-ray emission in the direction of the Galactic
center originates from high-energy cosmic-rays interacting with the interstellar medium in the Galaxy,
including hydrogen-rich interstellar gas. We refer to this emission as Galactic diffuse emission [3].
Models for this emission exist, however, they are limited by our incomplete understanding of the
gas’s structure. In particular, the data used to construct these models lack the resolution to capture
highly structured components of the Galactic diffuse emission, and therefore could confound our
ability to differentiate a dark matter signal from other, more structured components in the Galaxy [5].

In this study, we refine modeling of the highly structured component of the Galactic diffuse emission,
with a focus on the emission related to interstellar molecular hydrogen (H2 ). Directly measuring
the concentration of H2 in the Galaxy is difficult since it does not emit at characteristic frequencies.
Instead, we use other molecules found in conjunction with H2 as proxies for its distribution. Typically
the H2 concentration is modeled using CO measurements via radio telescopes. The concentrations
of these molecules are related [25], and conversion factors have been determined to infer the H2

concentration from CO measurements. However, CO becomes optically thick in high density cores
of interstellar clouds [28], reducing the trace accuracy in these regions. Instead, we can employ
the rarer isotopologues of CO , 13CO and C18O , which remain optically thin at higher densities.
Knowing the concentration of CO and its isotopologues is therefore vital for accurately modeling
the concentration of H2 clouds; their contribution to Galactic diffuse emission; and, ultimately, to
resolve the nature of the excess gamma-rays observed by Fermi–LAT in the Galactic center.

While promising, this approach is not straightforward. Primarily, 13CO and C18O emit at different
spectral frequencies and with much lower brightness than CO [14]. This introduces added complexity
to their measurement, and few surveys have included the isotopologues. Recently, the MOPRA CO
Survey [10] has provided high resolution measurements of all three isotopologues in the vicinity of
the Galactic center. This data provides an opportunity to use recent advancements in deep learning
to model the isotopologue concentrations given CO measurements. We employ the MOPRA data
as training examples for learning such a model. We fit classical Gaussian processes as well as deep
(convolutional) neural networks, inspired by their success in computer vision, as well as their many
other applications in physics [7, 9, 8, 27, 16, 6, 24]. In this paper, we present the first attempt at
modeling the concentration of the 13CO , the more ubiquitous and cleanly observable isotopologue,
given the baseline CO concentration measured by MOPRA.
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2 Methods

2.1 Data

Our dataset is generated from the MOPRA molecular gas survey [10, 11]. The complete survey
contains 50 1◦ × 1◦ images along the Galactic plane measuring the brightness of the three major
isotopologues of carbon monoxide: CO , 13CO , and C18O . The data covers Galactic longitudes
between 300◦ and 350◦ and Galactic latitudes between ±0.5◦ (◦ = degrees). The brightness of the
gas is measured as a function of gas velocity. From this, the column density for each is obtained
by integrating over a given velocity range and multiplying by a physically-determined conversion
factor. In particular, we divide the gas into 17 velocity bins, corresponding to Galactocentric radii.
Assuming that the Galaxy is in uniform circular motion, the velocity of the gas traces its distance
from the center of the Galaxy.

In order to simplify the regression problem and enlarge our effective dataset, we train a model
that maps small D1 ×D2 sections (patches) of the sky to their respective center points (Figure 1).
The validity of this simplification requires the gas column density to be locally correlated. That
is, we assume it is unlikely that distant regions of the galaxy could significantly affect each others’
concentrations. We evaluate this assumption in Section 3.1. This simplified formulation greatly
reduces model size and raises the number of training examples from just 50 images to over 50 million
patches when D1 = D2 = 7.

The original survey data contains systemic noise in the form of zero-valued vertical and horizontal
artifacts. We apply a σ = 1 pixel Gaussian filter across both source and target images, which removes
the large artifacts. Additionally, to ensure the highest quality data in the rarer isotopologues (13CO
and C18O ), we only keep pixels for which the brightness temperature exceeds the 3σ noise level.
Otherwise the pixel value is set to zero. We split the survey data into 80% training and 20% testing
subsets. However, this separation is not randomly selected. Instead, we construct the subsets so they
contain two mutually exclusive regions of the sky. We maintain this separation so we may examine if
the model overfits to a specific region of the Galactic center, which would impair its generalizability
to other surveys. We examine this claim in Section 3.2.

2.2 Gaussian Process Regression

A Gaussian process is a stochastic model where any finite collection of observed data are jointly
Gaussian with mean µ and covariance Σ. Using a finite set of observed data, we can obtain the
closed-form predictive distribution over unobserved data by maximizing the multivariate Gaussian
likelihood through kernel parameters ω [26]. Due to their capability to perform regression, the
smoothness of their samples, and their ability to capture both local and universal correlations between
data points, we employ Gaussian processes (GP) to predict 13CO concentration.

For statistical stability, the mean of a GP is set to zero. A zero-mean GP is uniquely defined by
its kernel κ. We employ a Matern kernel which is described below. In addition to being infinitely
differentiable, leading to smooth samples in the predictions, the Matern kernel is a stationary kernel,
meaning the pair-wise covariance of two points is only depending on their relative position. The
length scale, l, controls the distance over which the GP interpolates between points. Due to the
significant differences of pixel intensity over a small degree of sky maps, the ability to control the
length of interpolation is a crucial property of the kernel function. To account for the inherent noise in
MOPRA observations, a diagonal matrix σ2I is added to model the variance throughout the observed
data. The complete Gaussian process kernel consists of the Matern kernel, additional white noise,
and the variance estimate.

Matern(x1, x2) = ν0α(1 +
√

3r)exp(−
√

3r); r =
||x1 − x2||2

l
,White(x1, x2) = ν1 + ν2δx1,x2

We train the GP on pairs of horizontal and vertical patches with a size of 9 pixels from CO map as
the inputs. For each of these intersecting patches xh[i−4:i+4,j] and xv[i,j−4,j+4] we train separate GPs
predicting yh[i,j] and yv[i,j] which are the intensity of the pixel [i, j] on the 13CO map. Then the final
prediction for the intensity of the pixel o[i,j] on the 13CO map would be the mean of two separate
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predictions.

o[i,j] =
yh[i,j] + yv[i,j]

2
During training, the vertical and horizontal stride size (the distance between two adjacent patches) is
set to be 8. After all the prepossessing steps throughout the velocity bins, we extract the total number
of 7840 horizontal and vertical pairs of patches per velocity bins. We train an independent GP for
each velocity bin.

2.3 Patch Convolutional Neural Networks (CNNs)

We useK learned convolution filters of sizeD1×D2, operating on an entire patch, and independently
for each velocity bin. We do not apply any padding the patches, and evaluate the CNN once for each
patch. This results in a single latent vector with dimension K for each patch. We also include a
parametric ReLU non-linearity, PReLU(x) = max(x, αx), where α is a learnable parameter. This
allows the network to learn a larger class of functions. Additionally, we normalized the latent vectors
based on a moving average of their batch statistics [21], and we apply randomized drop-out to prevent
overfitting. These latent vectors are fed through several fully-connected layers, each with their own
PReLU non-linearity, batch-normalization, and dropout. The resulting vector is fed through a final
fully-connected layer which produces the scalar 13CO concentration estimate.

This patch-based CNN may also be viewed as a single large CNN with kernel size D1 ×D2 which is
applied to the entire image and returns another image. We can equate the window of this convolution
layer scanning across the image to applying a small convolution layer to individual patches of size
D1 × D2. We examine the CNN in the patch interpretation so that we may directly compare its
mechanism to the Gaussian process.

To effectively learn the widely varying dataset, the network is trained using either weighted mean
absolute error (WMAE) or Poisson log-likelihood. Since the target 13CO maps are rather sparse, we
re-weight conventional absolute error so the network prioritizes correctly predicting bright regions
over dim regions with a method akin to quantile regression. These weights are calculated from target
maps that were smoothed with a Gaussian kernel and re-scaled to be in [0, 1]. We emphasize high
concentrations regions by scaling their loss weight by up to σ = 30 times more than low concentration
regions, and we progressively reduce this scaling, γt, to 1.0 throughout training in order to prevent
bias. For input patches I , target values T , model f , and re-scaled epoch t ∈ [0, 1], the losses are
described as:

γt =

(
σ − σ

1 + exp (−10t+ 5)

)
(Rescale(Ti) + 1)

LWMAE =
1

N

N∑
i=1

γt|(f(Ii)− Ti|

LPoisson =
1

N

N∑
i=1

f(Ii)− Ti log f(Ii)

We tune the network hyperparameters using the SHERPA hyperparameter optimization library
[18, 19]. We tested 2000 network variations, using Gaussian Process optimization to suggest values
for the learning rate, filter count, window size, and maximum scaling coefficient. We evaluated
our model during hyperparameter optimization on a uniformly sampled 20% of the training data
which we label as the validation dataset. Our final model has the following parameterization: 128
convolution filters with a window size of 7× 7 and two fully-connected hidden layers. We evaluate
the final network by training it for 200 iterations using the LAMB gradient descent optimizer [29],
with learning rate of 10−3, and a batch size of 8192 patches. This training takes approximately 2
hours when performing CNN calculations on four NVidia Titan X GPUs.

3 Results

We evaluate our models using several metrics. These metrics are computed independently for each
source and target image plane in our testing dataset Sn and Tn. We measure the Pearson correlation

4



coefficient, the scaled absolute error, and a hot-spot scaled absolute error. See Figure 4 for full
heatmaps across the testing dataset. We also evaluate the median values for these metrics on each
model in Table 1.

When measuring relative error, conventional percent error proved difficult to interpret because our
data can take on a large range of values and contains many near-zero values in sparse regions. Instead,
to avoid direct division, we use a globally normalized variant which we call scaled absolute error.
Here, we compare the absolute error with the maximal element of each image plane, providing a
stable estimate of relative error. For the hot-spot absolute error, we normalize each velocity bin and
select only locations in the image that are at least one standard deviation above the velocity bin mean.
This serves as a simple marking of high-activity regions. Measuring scaled absolute error in these
hot-spots informs us if the model is biased towards low or high-value regions. We notice that all
models slightly degrade in performance on these hot-spot.

We notice that all of the models performed similarly on the dataset. The CNNs were best at broad
prediction across the entire dataset, scoring the lowest and most consistent absolute error. However,
the Matern GP performed best when predicting the bright hot-spots in the image. Since 13CO
contribution for H2 tracing is primarily in dense, high concentration regions, the effect of this
disparity must be further evaluated an analysis of these models’ ability to generate H2 concentrations
and, ultimately, gamma-ray emission maps. It is also important to evaluate if gamma-ray estimation
requires absolute accuracy in hot-spots, or if the simulated emission are not greatly effected by
absolute concentration.

3.1 Locality

During data preprocessing, we assumed that CO column densities are locally correlated. We examine
this assumption by comparing the models’ performance at various window sizes, independently
optimizing hyperparameters at each window size. A performance comparison is presented in Figure
2. We notice that increasing the window size has a negligible effect on scaled absolute error, implying
that additional long-distance information is not necessary for accurate prediction. In fact, larger
window sizes decrease performance, likely because they reduce training sample count and increase
the number of model parameters.

3.2 Generalizability

In order to evaluate if our models overfit to a specific region of the sky, we examine if model
performance worsens further away from the training regions. When creating the training-testing
data split, we ensured that the two datasets represented mutually exclusive regions. We trained on
Galactic longitudes between 300◦ and 340◦, and we tested between 340◦ to 350◦. We examine the
relationship between scaled absolute error and distance from the training region in Figure 3. We do
not see a significant trend as the model predicts further away from the training region, implying good
generalization in the Galactic center.

4 Discussion and Broader Impact

In this paper, we demonstrate the applicability of machine learning techniques to reconstructing the
distribution of 13CO , and validate it with available data. This is the first, crucial step to establishing
the validity of this methodology which hinges on machine learning reliably reconstructing this
emission for regions of the sky where observations are not available. This work benefits the broader
astrophysical community by allowing researchers to evaluate theories in regions of the sky where
expensive, accurate survey data is not yet available. The next step towards unraveling the Fermi–
LAT excess to apply this technique to the analysis of the gamma-ray emission data from the inner
Milky Way, which requires a full analysis of the Fermi–LAT data itself, including modeling of all
components of Galactic diffuse emission.
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Figures and Tables

Metric Equation Matern GP WMAE CNN Poisson CNN

Correlation Coefficient
∑N

n=1(Tn − T̄ )(On − Ō)√∑N
n=1(Tn − T̄ )2

√∑N
n=1(On − Ō)2

0.84 0.87 0.85

Scaled Absolute Error
1

N

N∑
n=1

|f(In)− Tn|
maxn |Tn|

0.0137 0.0135 0.0136

Hot-Spot Absolute Error
1

N

∑
Tn>Σ

|f(In)− Tn|
maxn |Tn|

0.0238 0.0257 0.0263

Table 1: A list of metrics and the median values that each method achieved on the testing datasets.
These values are from the best networks produced by the Sherpa hyperparameter optimization step.

Figure 2: The mean scaled absolute error of models that were tested during hyperparameter optimiza-
tion, grouped by their window size.

Figure 3: The mean scaled absolute error across all velocity bins, grouped by galactic longitude.
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Figure 4: Heatmaps comparing metric values across every velocity and longitude bin for every model.
White regions in the heatmaps indicate that the bin returned an invalid value for the metrics or there
were no available hot-spots in the region.
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