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Background

e The Fermi Large Area Telescope (LAT) has detected excess
gamma-rays towards the Galactic center?.

e Many possible explanations for this signal, including annihilating
dark matter in the central Milky Way?.

e However, we first need to first remove all explainable sources of
gamma radiation to account for background signal.

e One important indicator for gamma radiation emitted by cosmic
rays Interacting with dense interstellar gas is one of the
isotopologues of carbon monoxide: °CO.

Overview of Method

e However, 3CO is typically difficult to measure directly, but we can
easily measure the more common isotopologue: *“CO.
e Maybe we can learn a mapping between these two isotopologues.
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e Recently, the Mopra Southern Galactic Plane CO Survey? has
provided a dataset with both isotopologues in the same region.

e MOPRA provides 50, 1° x 1° x 17 bins, image cubes of the galactic
center. Not enough for a traditional image-to-image modeling!

e Since concentration is a local process, We split these images into
patches and train on each of them individually!

e We train a Matern-kernel Gaussian process and two variations of
a convolutional neural network in order to learn this mapping.

GP Patch
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Model

Gaussian Process

e Matern-kernel Gaussian process with a whitening kernel to
account for the noise in the data.

e Train row-wise and column-wise gaussian process independently
at each velocity bin and combine into a single prediction.
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CNN

e We include a stack of convolution layers at the front that evaluate
the entire patch. Each layer in the stack Is only responsible for a
single velocity bin.

e Afterwards, we add hidden feed-forward layers that operate on
the resulting latent vector, sharing weights between velocity bins.

e A final fully-connected layer produces the scalar *CO estimate.

CNN Loss

e MOPRA contains many regions of space with sparse
concentrations of *CO and also several bright hot-spots with
incredibly high concentration.

e We need a loss which works across many orders of magnitude.

e We compare two loss functions: Weighted MAE & Poisson NLL
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Results

Cannot use percent-error directly due to data
variability. However, bright regions are the most
important. We evaluate how well we model 3CO
w.r.t these bright regions: Scaled Absolute Error
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Locality

Was our assumption that we can train on
individual patches a valid one? We compare
model performance at different patch sizes.
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