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Abstract

Control of a particle accelerator relies on interpreting 
input diagnostics, and tuning the accelerator settings to 
achieve desired diagnostic values. Particle accelerator 
diagnostics can fail, slowly or abruptly, and currently a 
human operator is tasked with evaluating this. For truly 
autonomous operation of particle accelerators, we must be 
able to determine the reliability of a diagnostic using 
nothing more than the set of all diagnostic data. We 
present a method of quantifying the scale of error in 
diagnostic measurements based on gaussian process (GP) 
regression and the intuition that each diagnostic 
measurement from a beam position monitor (BPM) should 
be predictable given the set of all other BPM 
measurements.

Methods
This work is based on the assumption that the 
measurements from perfect diagnostics are all related, so 
that given the set of other all the other diagnostic 
measurements, we can accurately predict each 
diagnostic’s measurement. If we can make this prediction 
exactly in a theoretical picture, then we can use errors in 
fitting this relation to errors in the diagnostic 
measurements.
Thus, given a set of diagnostic measurements , we 
can infer the diagnostic measurement from a functional 
relation with all the other diagnostic measurements:

This is the diagnostic self-consistency assumption. 
We will test this assumption using simulation data to 
determine where it is valid using gaussian process 
regression. We then add normally distributed noise with a 
randomly assigned RMS value to each BPM’s data, and fit 
a GP model to this data on a training set. We compare the 
predictions of the GP model to the actual data in a holdout 
set, compute the RMS error of those predictions, and 
compare to the RMS noise level for each BPM.

{Xn}

Xi = fi({Xn≠i})

ATR Beamline

We use the ATR beamline at Brookhaven National 
Laboratory as our test beamline. This beamline has 22 
BPMs. We simulate the beam dynamics using MAD-X.

Baseline Model
To establish whether diagnostic self-consistency exists, we 
start by looking at simulation data with no noise – if BPM 
data is correlated self-consistently, then we expect a GP 
model to fit the data perfectly.

Self-consistency with Noise

To test how the diagnostic self-consistency appears with 
noise, we assigned each BPM a random RMS noise level 
and added noise to each BPM’s measurements, then 
repeated the self-consistency computation.

The self-consistency was fit to a training set of the BPM 
data, and then predictions were taken from a holdout set 
of BPM data using the trained GP model. We quantified 
the noise level by taking the RMS error in the prediction 
for each BPM’s holdout dataset, and compared to the 

Conclusions & Future Work

We have demonstrated that a self-consistency requirement 
can be used in an ideal model case to quantify the RMS 
uncertainty in BPM measurements for BPMs which 
satisfied the self-consistency condition in simulations. This 
assumes that the noise is gaussian and uncorrelated.
Future work must look at two different conditions:
1. The artificially added noise is non-gaussian (i.e.  

noise); correlated; then both; to show that the 
predictions are robust in more complex systems

2. The technique must be applied to archival particle 
accelerator data to see if it can predict diagnostics that 
were in the process of failing, which is a proxy 
measure for uncertainty.

Once we establish the technique is robust, we must find a 
way to integrate the resulting RMS measures into a 
reliability metric that can be used when automatically 
tuning a particle accelerator. This could be, for example, 
used as a prior on the inputs for a Bayesian optimization 
scheme, or a weight on the rate parameter in a gradient-
based optimization scheme.
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We find this diagnostic self-consistency for most of the 
BPMs, with outliers detectable from the simulations.

Outside of outlier BPMs which can be detected in 
simulations of the ideal case, the RMS noise levels are an 
excellent predictor of the diagnostic uncertainty, 
suggesting that this approach could be used to quantify 
diagnostic uncertainty.

GP model predictions from self-consistency (black points with 
uncertainty bars) vs. data from MAD-X simulations (red points).

GP model predictions from self-consistency (black points with 
uncertainty bars) vs. data with noise (red points).

RMS prediction errors from GP model predictions versus RMS 
gaussian noise level, showing linear trend for most BPMs

Twiss parameters and schematic of the ATR beamline


