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Abstract

Cosmologists aim to model the evolution of initially low amplitude Gaussian den-
sity fluctuations into the highly non-linear "cosmic web" of galaxies and clusters.
They aim to compare simulations of this structure formation process with obser-
vations of large-scale structure traced by galaxies and infer the properties of the
dark energy and dark matter that make up 95% of the universe. These ensembles
of simulations of billions of galaxies are computationally demanding, so that more
efficient approaches to tracing the non-linear growth of structure are needed. We
build a V-Net based model that transforms fast linear predictions into fully non-
linear predictions from numerical simulations. Our NN model learns to emulate
the simulations down to small scales and is both faster and more accurate than the
current state-of-the-art approximate methods. It also achieves comparable accuracy
when tested on universes of significantly different cosmological parameters from
the one used in training. This suggests that our model generalizes well beyond our
training set.

1 Introduction

Cosmology is at critical stage: the 2019 Nobel Prize recognized that a simple model with only five
basic parameters fits a host of astronomical observations on large-scales where the fluctuations are in
the linear regime. This model implies that atoms make up only 5% of the universe with the remaining
95% in the form of dark matter and dark energy. Astronomers have embarked on several large-scale
surveys and are launching multiple satellites that aim to collect data to understand these mysteries.
Analysis of this new data is limited by our computational abilities as numerical simulations are
essential for comparing theoretical predictions to observations on the small non-linear scales that
contain most of the cosmological information [1, 2, 3, 4, 5]. Unfortunately, the computational cost of
these simulations is high; a single simulation may require from thousands to millions of CPU hours.

In this work, we aim to build a neural network (NN) model that can learn to emulate these numerical
simulations both accurately and efficiently. This paper builds on the work of He et al. [6], which
showed that neural networks can indeed learn to run fast approximate simulations. Our main
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contributions is improvement of the model by training on full N-body simulations and extending to
much smaller scales, where the learning task becomes more difficult due to nonlinearity.

2 Methods

N-body Simulation. AnN -body simulation evolves a large number of massive dark matter particles
interacting with each other only through Newtonian gravity. Since our Universe began with matter
distributed almost uniformly, the simulation starts with particles only slightly perturbed from a
uniform grid and nearly at rest. During the simulation, a particle moves from its initial location q to
its final position x = q + Ψ(q), where Ψ is the displacement vector. N -body simulations usually
end at our current time, i.e. “today”; this is the time at which we compare them to our ML predictions.
The left panel of Fig. 1 shows an example of a simulation output.

We use 210 N -body simulations from the Quijote suite [7] for training (180), validation (20), and
testing (10). Each simulation contains 5123 particles in a box of 1 (Gpc/h)3 volume (nearly 5 billion
light years in size). In contrast to [6], the training set data was fast approximation simulations using
FastPM [8] (see next section), with 323 particles in a volume of 128 (Mpc/h)3. The simulated
universes resemble our own, and can be characterized by the value of five cosmological parameters:
matter density parameter Ωm = 0.3175 (this means 31.7% of the Universe is made of dark matter),
baryon density parameter Ωb = 0.049, dark energy density parameter ΩΛ = 0.6825, Hubble
parameter h = 0.6711, matter fluctuation within a 8 Mpc/h sphere σ8 = 0.834, primordial spectral
index ns = 0.9624. In addition, we also test our model, trained on the above simulations, on three
Quijote simulations with different values of the cosmological parameters, but the same configuration
otherwise.

Fast Approximation. N -body simulations can be very computationally expensive, as they typically
solve the dynamics of billions of particles for thousands of time steps. Fast approximate simulations
[9, 8] are usually adopted when a large number of simulations are needed. These methods save
computation time by only integrating tens of time steps; they are thus less accurate than full N -body
simulations. We aim to build an NN model that is more accurate and faster than these approximators.
In this work we use the widely used method COLA (COmoving Lagrangian Acceleration) [9], as
implemented in the publicly available package L-PICOLA [10], as a benchmark. COLA solves the
particle motions relative to predictions by the second order Lagrangian perturbation theory [11]. We
setup L-PICOLA using the same configurations as the full N -body simulations, running it for only 10
time steps.

Linear Theory. Fast and accurate solutions exist when matter distribution is close to uniform, and
density fluctuations are small. For instance, at linear order, particles move along straight lines, with
the distance determined by the growth function D of time: Ψlin(q, t) = D(t)/D(t0)Ψlin(q, t0). At
early times t0 → 0, such as the starting time of the simulations, Ψlin(t0) agrees very well with the
simulation prediction for Ψ(t0) due to uniformity.

The linear theory prediction is a very good approximation on large scales, where density fluctuations
are small. However, on small scales, the density contrast increases drastically and structure formation
becomes non-linear, limiting the validity of linear theory predictions. Therefore, we use Ψlin(q, t) as
the input to our NN model, which predicts the fully non-linear target Ψ(q, t) given by the N -body
simulations at the same t. By design, our NN will make accurate predictions on large scales. This is
true even if we test the model on universes with cosmological parameters different from the one used
for training, as we show below.

Neural Network Model. Both the input (linear theory) Ψlin’s and target (N -body simulation) Ψ’s
of our NN model are functions of q’s, that form a uniform grid. So each of them is a displacement
field that can be viewed as a 3D image, with three channels being the three Cartesian components of
the displacement vectors. This allows us to apply many computer vision models to our problem.

In this work we adopt a simple U-Net / V-Net [12, 13] type architecture similar to that in [6]. The
model works on 3 levels of resolution connected in a “V” shape by 2 downsampling layers and 2
upsampling layers, achieved by stride-2 23 convolutions and stride-1/2 23 transposed convolutions,
respectively. Blocks of 2 33 convolutions connect the input, the resampling, and the output layers.
As in V-Net, a residual connection, in this case, 13 convolutions instead of identity, are added over
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each of these convolution blocks. We add batch normalization after every convolution except the
first one and the last two, and leaky ReLU activation with negative slope 0.01 after every batch
normalization, as well as the first and the second to last convolutions. As in the original ResNet
[14], the last activation in each residual block acts after the summation. And as in U-Net / V-Net,
at all except the bottom resolution levels, the inputs to the downsampling layers are concatenated
to the outputs of the upsampling layers. All layers have a channel size of 64, except for the input
and the output (3), as well as those after concatenations (128). Finally, an important difference from
the original U-Net / V-Net is that we also add the input Ψlin directly to the output, so effectively the
network is learning the corrections to match the target Ψ.

Given a displacement field, we can compute the particle positions x and calculate their density
distribution, characterized by the overdensity field δ(x) ≡ n(x)/n̄− 1, where n(x) is the particle
number in voxel x and n̄ is its mean value. See Fig. 1 for an example of 1 + δ at “today”. Because
in cosmology the density field is closely related to observables, e.g. galaxies, we compose a loss
function that involves both Ψ and n, and combine them as L = ln(LδL

λ
Ψ), with Lδ and LΨ being

the MSE losses on n(x) and Ψ(q) respectively. We compute n from Ψ using the second order
B-spline kernel (known as cloud-in-cell), so that n is differentiable. By combining the two losses
with logarithm rather than summation, we can ignore their absolute magnitudes and trade between
their relative values. λ serves as a weight on this trade-off of relative losses. Through experiments,
we find that a value of λ from 2 to 5 yields the lowest ln(LδLΨ), and in this work, we use λ = 3.

Limited by the GPU memory, the entire input, Ψlin (3×5123), cannot be feed all at once to the model
and needs to be cropped into smaller cubes of size 3× 1283. To preserve the physical translational
equivariance, we do not use any padding in the 33 convolutions, resulting in a smaller output than the
input in spatial size. We compensate this by periodically padding 20 voxels per side to the input cubes.
To preserve the rotational equivariance of the simulation box, we implement data augmentation that
rotates and reflects the displacement fields as in Ref. [6]. We use the Adam optimizer [15] with
learning rate 0.0001, β1 = 0.9, β2 = 0.999, and reduce the learning rate by half when loss does not
improve for 3 epochs.

3 Results

Accuracy We quantify model accuracy by compare the simulation power spectra with the
power spectra estimated by the NN and by the benchmark method. The density power
spectrum quantifies the correlation of density fluctuations as a function of scale: Pδ(ki) =
(NiV )−1

∑
ki<k≤ki+1

δ(k)δ(−k), where V is the volume, δ(k) is the Fourier transform of δ(x), ki’s
are bin edges for the wavevector k, andNi is the number of k’s falling in (ki, ki+1]. The wavenumber
k ≡ |k| describes the scale, with low/high k representing large/small scales. The cross-power
spectrum, δpred(k)δtrue(−k) measures the covariance between the predicted and target density fields.
We define a transfer function, T (k) =

√
Ppred(k)/Ptrue(k), where Ppred(k) and Ptrue(k) are the

power spectra of the prediction and the simulation, respectively. If T (k) = 1, the predictions accurate
capture the amplitude of the density field. The cross-correlation coefficient, r, measures the phase
correlations: r(k) = Ppred×true(k)/

√
Ppred(k)Ptrue(k), with the numerator being the cross-power

spectrum between the prediction and the simulation. T and r are good estimators to quantify the
accuracy of the model, because when they are both 1 the prediction and target are identical as proved
in Ref. [6]. Instead of r, we use 1− r2, which gives the amount of unexplained variance between the
two fields. Similar to δ, we can also compute P (k), T (k), and r(k) for Ψ by simply replacing the
scalar product with the dot vector product.

We consider ten Quijote simulations from the test set (see the left panel of Fig. 1 for an example),
together with their fast approximate and NN counterparts. From each of them, we compute their
displacement and density power spectra, as well as the corresponding T and 1− r2. We show the
results in the central and right panels of Fig. 1. We find that the NN outperforms the benchmark
model in accuracy on all scales and for all considered quantities. We emphasize that our NN model
produces percent-level accurate results down to scales as small as k ' 1 h/Mpc.

Generalization to Different Universes. We test the NN model on 2000 universes with drastically
different cosmological parameters, where structure formation proceeds in a very different way
from that in the training simulations. In particular, we varied all five cosmological parameters:
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Figure 1: The left panel shows an example of the projected density field in a Universe as predicted by
an N -body simulation. We quantify the accuracy of the NN against the fast approximator and the
N-body simulation using the power spectrum of the displacement field (middle panel) and the density
constrast (right panel). The NN model outperforms the fast simulator in all cases.
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Figure 2: Accuracy comparison between predictions by the fast approximator (blue dot-dashed)
and our NN (green dashed) for universes with cosmological parameters very different to
those used in training: {Ωm,Ωb, h, ns, σ8} equal to {0.1755, 0.0668, 0.7737, 0.8849, 0.6641}
(left), {0.3889, 0.0363, 0.6275, 0.9513, 0.9137} (middle), {0.4291, 0.0337, 0.5511, 1.1687, 0.6619}
(right). This demonstrates that our NN generalizes very well.

{Ωm,Ωb, h, ns, σ8} that are relevant to the simulations. We show the prediction comparisons for the
density field in Fig. 2, and find that the NN generalizes very well for cosmologies with low Ωb/Ωm

and achieves a similar accuracy to that in Fig. 1 (same conclusion holds for the displacement field). It
also outperforms the fast approximator COLA, even though COLA depends explicitly on the varied
cosmological parameters. This result is in concordance with that in Ref. [6], where Ωm and σ8 were
varied individually.

Efficiency. We now compare the computational cost of the NN versus the fast approximation
benchmark, as well as that of the N -body simulations. We show in Table 1 the total inference time to
obtain the whole 5123 displacement field using 64 1283 cubes.

The fast approximation uses 20 CPU cores (Intel Xeon CPU E5-2640 v4), and the NN inference
uses PyTorch [16] on 1 GPU (NVIDIA Tesla P100-PCIE-16GB). The N -body simulation requires
500 CPU hours on 48 cores, or ∼ 105 seconds if we scale it to 20 cores to compare with the fast
approximation. Our NN model is two times faster than the fast approximation benchmark, and more
than 103 times faster than the N -body simulation.
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Table 1: Runtime benchmark. The NN model is 2× faster than the fast approximator, and more than
103× faster than the N -body simulation.

QUIJOTE L-PICOLA PyTorch-GPU
Wall Time (s) 105 112 59

4 Conclusions

In this paper, we have shown that neural networks are able to accurately emulate the output of
expensive N-body simulations. We have shown that our model reproduces the results of full N -body
simulations down to scales as small as k = 1 h/Mpc at present time to within ∼ 1% accuracy.
When compared to the state-of-the-art N-body simulation approximator in cosmology, our V-Net
based network achieves better accuracy in less time. Furthermore, we have demonstrated that our
network generalizes extremely well, by showing a comparable level of accuracy for universes that it
has not been trained on. Our method represents a big step forward in the direction of reducing the
computational time needed to provide theory predictions in the non-linear regime. This paves the
way to maximizing the scientific return of current and upcoming billion dollar astronomical missions.

Broader Impact

We think the ML methods used in this work may be useful to motivate and enlighten students from
different fields, especially those who are interested in astronomy, and to use new tools to help us for a
better understanding of our Universe. Moreover, because of the upcoming astronomical probes for
the next ten years, we believe that the outcomes of this work might help in future scientists run fast
simulations of universes with high precision using a regular computer.

Acknowledgments and Disclosure of Funding

RAO thanks Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Simons
Foundation. YL thanks the Simons Foundation for support of fellowship. The Flatiron Institute is
supported by the Simons Foundation. We acknowledge that our work was partly performed using
the Princeton Research Computing resources at Princeton University which is consortium of groups
led by the Princeton Institute for Computational Science and Engineering (PICSciE) and Office of
Information Technology’s Research Computing, and made use of the CHE cluster, managed and
funded by the COSMO/CBPF/MCTI, with financial support from FINEP and FAPERJ, and operating
at Javier Magnin Computing Center/CBPF.

References
[1] ChangHoon Hahn, Villaescusa-Navarro Francisco, Castorina Emanuele, and Scoccimarro

Roman. Constraining Mν with the Bispectrum I: Breaking Parameter Degeneracies. arXiv
e-prints, page arXiv:1909.11107, Sep 2019.

[2] Elena Massara, Francisco Villaescusa-Navarro, Shirley Ho, Neal Dalal, and David N. Spergel.
Using the Marked Power Spectrum to Detect the Signature of Neutrinos in Large-Scale Structure.
arXiv e-prints, page arXiv:2001.11024, January 2020.

[3] Cora Uhlemann, Oliver Friedrich, Francisco Villaescusa-Navarro, Arka Banerjee, and Sand rine
Codis. Fisher for complements: Extracting cosmology and neutrino mass from the counts-in-
cells PDF. arXiv e-prints, page arXiv:1911.11158, Nov 2019.

[4] E. Allys, T. Marchand, J. F. Cardoso, F. Villaescusa-Navarro, S. Ho, and S. Mallat. New
Interpretable Statistics for Large Scale Structure Analysis and Generation. arXiv e-prints, page
arXiv:2006.06298, June 2020.

[5] Arka Banerjee and Tom Abel. Nearest Neighbor distributions: new statistical measures for
cosmological clustering. arXiv e-prints, page arXiv:2007.13342, July 2020.

5



[6] Siyu He, Yin Li, Yu Feng, Shirley Ho, Siamak Ravanbakhsh, Wei Chen, and Barnabás Póczos.
Learning to predict the cosmological structure formation. Proceedings of the National Academy
of Sciences, 116(28):13825–13832, 2019.

[7] Francisco Villaescusa-Navarro, ChangHoon Hahn, Elena Massara, Arka Banerjee, Ana Maria
Delgado, Doogesh Kodi Ramanah, Tom Charnock, Elena Giusarma, Yin Li, Erwan Allys,
Antoine Brochard, Cora Uhlemann, Chi-Ting Chiang, Siyu He, Alice Pisani, Andrej Obuljen,
Yu Feng, Emanuele Castorina, Gabriella Contardo, Christina D. Kreisch, Andrina Nicola, Justin
Alsing, Roman Scoccimarro, Licia Verde, Matteo Viel, Shirley Ho, Stephane Mallat, Benjamin
Wandelt, and David N. Spergel. The quijote simulations. The Astrophysical Journal Supplement
Series, 250(1):2, aug 2020.

[8] Yu Feng, Man-Yat Chu, Uroš Seljak, and Patrick McDonald. Fastpm: a new scheme for fast
simulations of dark matter and haloes. Monthly Notices of the Royal Astronomical Society,
463(3):2273–2286, 2016.

[9] Svetlin Tassev, Matias Zaldarriaga, and Daniel Eisenstein. Solving Large Scale Structure in Ten
Easy Steps with COLA. JCAP, 06:036, 2013.

[10] Cullan Howlett, Marc Manera, and Will J. Percival. L-PICOLA: A parallel code for fast dark
matter simulation. Astron. Comput., 12:109–126, 2015.

[11] Francis Bernardeau, S Colombi, E Gaztanaga, and R Scoccimarro. Large-scale structure of the
universe and cosmological perturbation theory. Physics reports, 367(1-3):1–248, 2002.

[12] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for
Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and
Alejandro F. Frangi, editors, Medical Image Computing and Computer-Assisted Intervention
– MICCAI 2015, Lecture Notes in Computer Science, pages 234–241, Cham, 2015. Springer
International Publishing.

[13] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-Net: Fully Convolutional
Neural Networks for Volumetric Medical Image Segmentation. In 2016 Fourth International
Conference on 3D Vision (3DV), pages 565–571, October 2016.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[15] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. arXiv:
1412.6980.

[16] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8026–8037. Curran Associates, Inc., 2019.

6


	Introduction
	Methods
	Results
	Conclusions

