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Introduction

I Tracking approached as a graph
“edge classification” problem

I Data represented as graphs
I Nodes→Hits
I Edges→Doublet connections

I Interest in GNN inference in
FPGA-based trigger and
co-processors to improve offline
computational performance

I FPGA implementations of GNN
segment classifiers explored
using hls4ml and OpenCL

I hls4ml: compiler for physicists
and ML experts to convert ML
algorithms into FPGA firmware

I OpenCL: framework for writing
programs that execute across
heterogenous platforms (CPUs,
GPUs, FPGAs, etc.)
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Model Architectures

I hls4ml Implementation
I Architecture: Exa.TrkX NeurIPS 2019 Segment Classifier
I Encoder (edges/nodes): 4/3→ (8, 8)
I Interaction Network (edge and node blocks): 8→ (8, 8)
I Decoder (edges): 8→ (8, 8, 8, 1)
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Interaction network

I OpenCL Implementation
I Architecture: Interaction Network
I Edge block: 7→ (250, 250, 250, 1), node block: 4→ (200, 200, 3)
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hls4ml Latency and Resources

I Efficiency improvements for design targeting Xilinx KU115 FPGA:
I Pipelining with reuse factor at edge/node block-level
I Input streaming: implement incoming data as FIFO to recycle resources
I Loop unrolling, zero-padding up to max. graph size

I For 1/64 of TrackML detector, pTmin
= 2 GeV (28 nodes, 37 edges at

95th percentile)
I Achieves latency of 650 ns to 1 µs
I Scan vs. bit precision show lower bit width results in smaller area,

faster execution
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I Scan vs. reuse factor show trade-off between resource usage and latency
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hls4ml Performance

I GNN correctly classifies track
segments with AUC ∼ 0.983

I AUC scan vs. fixed-point bit
precision <total,integer>

shows good performance for
<12,6>

I For 1/16 of a TrackML detector,
pTmin

= 2 GeV (112 nodes, 148
edges at 95th percentile)
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OpenCL Latency and Resources

I Efficiency improvements for
design targeting Arria 10 GX
1150 FPGA:
I 2D local memory tiling/register

blocking: reduce
redundancy/latency of reading
off-chip memory

I Double buffering: allow host to
process/transfer data while kernel
executes

I Loop unrolling

I Scales up more easily to larger
graph sizes (smaller pTmin

)
I Achieves latency of 10 ms to 1 s

including CPU-FPGA I/O
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Summary

I Two complementary implementations of GNNs on FPGAs
I Current performance promising for trigger-level applications (hls4ml)

and co-processing applications (OpenCL and hls4ml)
I OpenCL implementation scales more easily to larger

graphs while hls4ml implementation has
latency/throughput advantage

I Future Work
I Further detailed comparisons between the implementations based

on the same model
I Comparison with GPU co-processors
I Additional optimizations such as quantization-aware training
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