
Accelerated Charged Particle Tracking with Graph Neural Networks on
FPGAs

Aneesh Heintz1, Vesal Razavimaleki2, Javier Duarte2, Gage DeZoort3, Isobel Ojalvo3, Savannah Thais3, Markus Atkinson4, Mark Neubauer4,
Lindsey Gray5, Sergo Jindariani5, Nhan Tran5, Phil Harris6, Dylan Rankin6, Thea Aarrestad7, Vladimir Loncar7, Maurizio Pierini7, Sioni Summers7,

Jennifer Ngadiuba8, Mia Liu9, Edward Kreinar10, Zhenbin Wu11

1Cornell 2UC San Diego 3Princeton 4UIUC 5Fermilab 6MIT 7CERN 8Caltech 9Purdue 10Hawkeye360 11UIC

Introduction

I Tracking approached as a graph
“edge classification” problem

I Data represented as graphs
I Nodes→Hits
I Edges→Doublet connections

I Interest in GNN inference in
FPGA-based trigger and
co-processors to improve offline
computational performance

I FPGA implementations of GNN
segment classifiers explored
using hls4ml and OpenCL

I hls4ml: compiler for physicists
and ML experts to convert ML
algorithms into FPGA firmware

I OpenCL: framework for writing
programs that execute across
heterogenous platforms (CPUs,
GPUs, FPGAs, etc.)

150 100 50 0 50 100 150
X [mm]

150

100

50

0

50

100

150
Y

[m
m

]

1500 1000 500 0 500 1000 1500
Z [mm]

150

100

50

0

50

100

150

R
[m

m
]

Model Architectures

I hls4ml Implementation
I Architecture: Exa.TrkX NeurIPS 2019 Segment Classifier
I Encoder (edges/nodes): 4/3→ (8, 8)
I Interaction Network (edge and node blocks): 8→ (8, 8)
I Decoder (edges): 8→ (8, 8, 8, 1)

(vi, ek)

Node
block

Edge
blockEncoder Decoder

(v′ ′ i , e′ ′ k)

e′ k = ϕe
1(ek)

v′ i = ϕv
1(vi)

e′ ′ k = ϕe
2(e′ k, v′ rk

, v′ sk
)

ē′ ′ i = ρe→v(E′ i)
v′ ′ i = ϕv

2(ē′ ′ i , v′ i)

(v′ i, e′ k) (e′ ′ ′ k)

e′ ′ ′ k = ϕe
3(e′ ′ k)

ϕe
1 :NN(4,8,ReLU,8,ReLU)

ϕv
1 :NN(3,8,ReLU,8,ReLU)

ϕe
2 :NN(24,8,ReLU,8,ReLU)

ϕv
2 :NN(16,8,ReLU,8,ReLU)

ϕe
3 :NN(8,8,ReLU,8,ReLU,8,ReLU,1,sigmoid)

Interaction network

I OpenCL Implementation
I Architecture: Interaction Network
I Edge block: 7→ (250, 250, 250, 1), node block: 4→ (200, 200, 3)

e′ k = ϕe
2(ek, vrk

, vsk
)

ē′ i = ρe→v(Ei)

(vi, ek)

Edge
block

Node
block

v′ i = ϕv
2(ē′ i, vi)

(e′ ′ k)
Interaction network

Edge
block

e′ ′ k = ϕe
2(e′ k, v′ rk

, v′ sk
)

(v′ i, e′ k)

hls4ml Latency and Resources

I Efficiency improvements for design targeting Xilinx KU115 FPGA:
I Pipelining with reuse factor at edge/node block-level
I Input streaming: implement incoming data as FIFO to recycle resources
I Loop unrolling, zero-padding up to max. graph size

I For 1/64 of TrackML detector, pTmin
= 2 GeV (28 nodes, 37 edges at

95th percentile)
I Achieves latency of 650 ns to 1 µs
I Scan vs. bit precision show lower bit width results in smaller area,

faster execution

10 15 20
Total bit precision

0

50

100

150

200

U
sa

ge
 [%

]

28 nodes, 37 edges
DSP
LUT
BRAM
FF

10 15 20
Total bit precision

140

150

160

170

La
te

nc
y

[c
yc

le
s]

28 nodes, 37 edges

I Scan vs. reuse factor show trade-off between resource usage and latency

5 10 15
Reuse factor

0

100

200

300

400

U
sa

ge
 [%

]

28 nodes, 37 edges
DSP
LUT
BRAM
FF

5 10 15
Reuse factor

140

160

180

200

La
te

nc
y

[c
yc

le
s]

28 nodes, 37 edges

hls4ml Performance

I GNN correctly classifies track
segments with AUC ∼ 0.983

I AUC scan vs. fixed-point bit
precision <total,integer>

shows good performance for
<12,6>

I For 1/16 of a TrackML detector,
pTmin

= 2 GeV (112 nodes, 148
edges at 95th percentile)

10 15 20
Total bit precision

0.7

0.8

0.9

1.0

AU
C

 112 nodes, 148 edges
hls4ml
Expected (0.983)

OpenCL Latency and Resources

I Efficiency improvements for
design targeting Arria 10 GX
1150 FPGA:
I 2D local memory tiling/register

blocking: reduce
redundancy/latency of reading
off-chip memory

I Double buffering: allow host to
process/transfer data while kernel
executes

I Loop unrolling

I Scales up more easily to larger
graph sizes (smaller pTmin

)
I Achieves latency of 10 ms to 1 s

including CPU-FPGA I/O

ALUT FF RAM DSP MLAB
Component

0

5

10

15

20

U
sa

ge
 [%

]

32 bit
16 bit
 8 bit

2 4
Min. track pT [GeV]

10−2

10−1

100

La
te

nc
y

[s
]

8 bit FPGA only
8 bit CPU + FPGA

10−2 10−1 100

Event size [GB]

10−2

10−1

100

La
te

nc
y

[s
]

8 bit FPGA only
8 bit CPU + FPGA

Summary

I Two complementary implementations of GNNs on FPGAs
I Current performance promising for trigger-level applications (hls4ml)

and co-processing applications (OpenCL and hls4ml)
I OpenCL implementation scales more easily to larger

graphs while hls4ml implementation has
latency/throughput advantage

I Future Work
I Further detailed comparisons between the implementations based

on the same model
I Comparison with GPU co-processors
I Additional optimizations such as quantization-aware training

fastmachinelearning.org iris-hep.org Machine Learning and the Physical Sciences, NeurIPS 2020, Vancouver, BC, Canada

https://jduarte.physics.ucsd.edu
https://github.com/fastmachinelearning/hls4ml
https://arxiv.org/abs/2003.11603
https://arxiv.org/abs/2012.01563
https://fastmachinelearning.org
https://iris-hep.org
https://ml4physicalsciences.github.io/2020

