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Abstract

Accurate and fast simulation of particle physics processes is crucial for high-energy
physics community. Simulating the particle showers and interactions in the detector
is both time consuming and computationally expensive. Classical fast simulation
approaches based on non-parametric approaches can improve the speed of the
full simulation but suffer from lower levels of fidelity. For this reason, alternative
methods based on machine learning can provide faster solutions, while maintaining
a high level of fidelity. The main goal of a fast simulator is to map the events
from the generation level directly to the reconstruction level. We introduce a graph
neural network-based autoencoder model that provides effective reconstruction of
calorimeter deposits using the earth mover distance metric.

1 Introduction

High-energy collisions taking place at the Large Hadron Collider (LHC) are very complex in nature.
To reconstruct collision events, advanced probabilistic models have been developed describing them
as follows:

p(r-particles|θ) =
∫
R(r-particles|particles)H(particles|partons)

×P (partons|θ) dparticles dpartons
(1)

where P represents the probability density of observing a set of reconstruction particles given a
point in the parameter space, H refers to the hadronization process where mapping from the parton
to the particle level occurs and R(particles) is the detector response [1].The latter has so far been
approximated through complex software toolkits performing full simulation of the passage of
particles through matter such as Geant [2]. Such simulations are highly accurate yet prohibitively
complex and require extensive computing resources and therefore, fast simulation techniques have
been introduced as a computationally efficient and faster alternative. Typically, fast simulations are
performed with parametric methods for detector response, while providing user interfaces to specify
detector properties and calorimeter segmentation [3].
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Figure 1: The comparison between the energy deposits in the Tracker, ECAL, and HCAL calorimeter
layers. The leftmost images show the combined data from all the three layers

Recent advances in the field of deep learning and computer vision have produced notable
applications in particle physics [4]. The potential of generative models for simulating collision events
is a very active area of research. In [5], a combination of a Variational Autoencoder (VAE) and a
Generative Adversarial Network (GAN) is used to simulate electromagnetic showers in calorimeters.
Other studies focus on GANs for QCD Dijet events [6] and hadronic jets [7]. In our study, we make
use of VAEs [8] and geometric deep learning [9] to learn a compressed representation of the data
to be used for reconstruction of high-energy physics events. As detector data in non-Euclidean by
nature, we use geometric deep learning techniques including spatial graph convolutional layers [10]
to learn the properties of the graph-like jets and spectral clustering layers to compress these graphs
into smaller, more representative nodes.

2 Data

2.1 Definition

In this work, we make use of the CMS Open Data release [11] - publicly accessible data from the
LHC experiments. We consider the boosted top quark jets produced using Pythia 6, a program for
generating particle collisions events. The data was transformed into image-based form, specifying
the location and values of energy deposits in the calorimeter by following the prescription in [12].
The data consists of almost 30000 samples of 3x125x125 arrays representing the mesh and the
segmentation of 3 detector stages: Tracker, ECAL and HCAL subdetectors, respectively. We aim
to reconstruct jets that deposit their energy in the calorimeters, initially focusing only on the ECAL
subdetector hits. The non-zero hits within this 125x125 array correspond to the hit energy of the
corresponding particle shower deposited at that specific grid cell.

2.2 Pre-processing

For the data loading step, we utilize the DataLoader objects from PyTorch library. The split of
the dataset follows random shuffling when loading the data from each file, in addition to each file
containing randomly selected data. We then create three separate objects - the training, testing, and
validation loader respectively.

We pre-process the data by selecting the non-zero hit locations within the array, providing their
respective x and y locations as per the calorimeter segmentation. Afterwards, we concatenate the x,y
locations with their corresponding hit energy at that location. At this stage, each sample has the shape
Nx3 where N is the number of non-zero particle hits within the detector for one specific sample jet,
with each sample containing 3 features: the x,y locations and their hit energies, respectively. In the
next section we show that N is also the number of nodes within one graph representing a jet.
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Figure 2: Model architecture of the Graph Variational Autoencoder showing GraphSAGE layers and
pooling blocks

3 Model architectures

In this study, we make use of geometric deep learning methods whereas convolution operations
are translated to non-Euclidean structures [13], in contrast to previous studies where the entire
grid-like structure of a given detector is used as an input to fully-connected or convolutional layers
for classification or regression purposes. Therefore, we consider particle hits within a detector to be
interconnected nodes in a graph. In contrast to molecular chemistry, where the graph topology is
constrained by the molecule shape [14], jets in particle collisions are not characterized by such pre-
defined topology. We proceed by connecting each node to its k-nearest neighbours based on Euclidean
distance given by

√
(x− xi)2 + (y − yi)2 with xi and yi referring to this node’s coordinates. To

learn the properties of these jets as graphs in addition to a compressed representation to be used in
an encoder-decoder architecture, we develop a Graph VAE architecture whose encoder embeds the
node features into latent space dimensions through Dense GraphSAGE layers [15], then compresses
them into smaller dimensions using dense mincut graph pooling operations inspired by [16] where
spectral clustering of the graph nodes is performed. In the next stage, a decoder performs decoding
of the latent space compressed nodes to obtain upsampled feature matrix X and adjacency matrix A,
respectively as follows:

Xrec = SXPooled;Arec = SAPooledST (2)

where S is a learned cluster assignment matrix similar to the one defined in [16]. A pictorial
representation of our model is given in Figure 2.

To proceed with training, we choose k=4 as the number of nearest neighbours to be connected to each
node. In addition, we use the Adam optimizer with a learning rate of 0.001. Finally, our loss function
includes the MSE loss between node features on the one hand, and the Kullback-Leibler divergence
between the latent space and the real P(z|x) distribution. Prior to training, we split our dataset into
70% training, 20% validation, 10% testing.

4 Metrics and Results

First introduced in 2019, the Earth Mover Distance (EMD) metric describes the space of two collider
events [17]. It represents the minimum "work" needed to be applied by the movements of energy
fij from particle i in one event to particle j in the other so that event E is rearranged into event E ′.
We therefore use the EMD metric to assess the quality of reconstructed jets produced by our fast
simulation.

We obtain our results after training on a Tesla P100 GPU. In Figure 3 we show the reconstruction
result for several simulated jets from our GVAE model. The plots show that our model’s decoder is
able to accurately reconstruct the jets from compressed latent vectors, both in terms of locations and
energy values. In addition, Figure 4 shows the EMD values corresponding for 4800 reconstructed jets.
Relatively low values of the EMD imply a high-level of similarity between GVAE reconstructed and
fully-simulated jets. The GVAE model spends a total of 0.1235 seconds on a batch of 64 jets, which
is orders of magnitude smaller than running full simulation. We therefore conclude that our approach
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Figure 3: Real simulated jet (left) compared to the Reconstructed GVAE jet (right) in the detector

Figure 4: Earth Mover Distance

is successful in reproducing particle physics jet data at high-levels of fidelity and with acceptably low
inference times.

For benchmarking, we compare the execution time to the full Monte Carlo simulations used for
approximating the probability density function from eq.1. Such simulation takes 45 seconds for the
event batch of the same size. In contrast to this results, the graph method takes around 0.1 second for
the inference, which is over 400% speedup (Figure 5).

In this proof-of-concept work we shed light on the potential of graph-based architectures for repre-
senting particle jets resulting from high-energy collisions. Graph neural networks tackle the issue of
data sparsity in particle detectors by allowing the model to directly learn from the particle hits while
disregarding empty cells during the training of the model. Through spatial convolution, the model is
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Figure 5: Runtime comparison between Graph VAE and traditional Monte Carlo methods for boosted
top quark jet samples

able to learn the interactions between particle hits forming the topology. The latter is sequentially
compressed by means of mincut pooling to preserve the most representative nodes in latent space.
Finally, a trained decoder upsamples the compressed vectors to the original reconstruction, leading to
a proof-of-concept simulator. We have demonstrated the initial application and will discuss additional
extensions to the full detector in an upcoming more detailed publication.

5 Broader Impact

This work is an open-source project, and has a potential to impact many researchers who rely on
particle simulations for physics studies. In terms of ethical and future societal consequences, the
computational efficiency provided by the generative model presented in this work, allows to overcome
computational and time constraints. In the absence of adequate computational resources, this type
of simulation would be an advantage to the research, as it provides an opportunity for a speedup of
obtaining the results. At the same time, due to a need for some computational requirements of our
implementation, those with very limited access to computing resources may be at a disadvantage.
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