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Abstract

Inferring the input parameters of simulators from observations is a crucial challenge
with applications from epidemiology to molecular dynamics. Here we show a
simple approach in the regime of sparse data and approximately correct models,
which is common when trying to use an existing model to infer latent variables with
observed data. This approach is based on the principle of maximum entropy and
provably makes the smallest change in the latent joint distribution to accommodate
new data. This simple method requires no likelihood or simulator derivatives and
its fit is insensitive to prior strength, removing the need to balance observed data fit
with prior belief. We demonstrate this MaxEnt approach and compare with other
likelihood-free inference methods across three example systems.

1 Introduction

Simulation-based inference (SBI) is a class of methods that infer the input parameters and unob-
servable latent variables in a simulator from observational data. SBI is different than traditional
statistical inference or machine learning because simulators are typically not differentiable and their
likelihoods are intractable. There have been great strides in methods for SBI and a recent review
may be found in [1]. Most SBI methods are concerned with finding a few simulator parameters
from a rich set of observations[2, 3, 4]. Here, we consider biasing a simulator with many trusted
parameters to match a sparse set of observations. The motivating example for this line of research is
in molecular dynamics simulations of proteins. These simulations require thousands of parameters
and the observed data is on the order of 10 data points. An approach that has emerged successfully in
molecular dynamics simulations is maximum entropy (MaxEnt) biasing. MaxEnt biasing minimially
modifies the simulator to match observations. The premise of MaxEnt is that the original model is
approximately correct and observations should be matched in expectation, which is different than
other methods. These two assumptions lead to a unique bias to the simulator that is independent of
the parameters and can be implemented as a simple reweighting procedure. The method’s run-time
scales only with sample number, rather than the number of model parameters which is atypical of
most SBI methods because they require joint sampling.

The idea of using MaxEnt for biasing simulators goes back to Jayne’s pioneering work on deriving
statistical physics from MaxEnt[5]. It was shown, for example, that the Boltzmann distribution
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could be derived by simply adding a restraint on average energy that must be satisfied in expectation,
analogous to matching an observation. A similar method of incorporating observations in expectation
returned 50 years later in determining how to match protein molecular dynamics simulations to
observations[6]. This method was then recast as an approximation to MaxEnt[7] and Pitera and
Chodera[8] showed how to directly match observations in molecular dynamics with MaxEnt. This
was followed by rapid progress to create practical methods for use in simulations[9, 10, 11, 12].
A recent review of these "minimal biasing" methods can be found in Bonomi et. al[13]. The
MaxEnt method derived here, which is about reweighting, has been presented in many forms over the
years[14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

Our contribution here is deriving a general MaxEnt framework that is applicable to arbitrary simula-
tors, demonstrating its application to areas outside of molecular dynamics, and showing one method of
improving the support (sampling) of the posterior, which is important when the simulator is far from
the observations. In the remainder of this work, we develop the theory, discuss sampling issues, and
compare the MaxEnt method to approximate Bayesian computing (ABC)[3, 24, 25, 26], Sequential
neural likelihood (SNL)[27], and direct Bayesian inference when the likelihood is tractable.

2 Theory

Given a simulator f(~θ) with a set of parameters ~θ, we have a prior distribution of parameters P (~θ).
For example, the function f(~θ) could be propagating a system of ODEs for some set number of
timesteps or a molecular dynamics simulation with intrinsic noise.

Suppose we have some set of N observations, {ḡ}k, k ∈ [1, . . . , N ], which we would like to match
with our model. We would like to constrain our model such that∫

d~θ d~εP ′(~θ)gk[f(~θ)] = E[gk] = ḡk∀k (1)

This means that we want the average over the distribution of our biased models (P ′(~θ)) to match
the observations data. This is an unusual constraint and is weaker than most simulation inference
methods. It reflects the strong belief in our prior model in this setting.

The unique maximum entropy modification to the prior distribution P (~θ) to satisfy the N constraints
is[7, 8, 12]

P ′(~θ) =
1

Z ′
P (~θ)

N∏
k

e−λkgk[f(~θ)] (2)

where Z ′ is a normalization constant and λk are chosen such that E[gk] = ḡk. The challenge of using
MaxEnt is sampling from P ′(~θ). Our assumption is that our prior P (~θ) is approximately correct,
so that samples from P (~θ) should be similar to P ′(~θ). This is the ideal case and our algorithm is
simply a matter of reweighting. You sample ~θi, compute f(~θi), compute weights proportional to
wi[P

′] =
∏N
k e
−λkgk[f(~θ)] consistent with the experimental data, and then any other property is

reweighted. In the non-ideal case (if e.g. sampling is expensive, the space is high-dimensional, or the
model is far from correct), there can be insufficient support to agree with the constraints. To treat
insufficient support, we take a simple approach and use gradient descent to modify the sampling
distribution P j(~θ) to minimize the cross-entropy with P ′(~θ):

P j+1(~θ) = P j(~θ)− η δ

δP j(~θ′)

∑
i

wi[P
′] lnP (~θi) (3)

where wi[P ′] depends on P j(~θ
′
) via the expectation function and δ

δP j(~θ′ )
indicates a functional

derivative. This approach can include uncertainty in experimental data by explicitly accounting for
bias[28], though for brevity we do not consider this here.
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Figure 1: Comparison of Bayesian inference and MaxEnt reweighting. Panel a shows the unbiased
simulator distribution in orange and the two versions of MaxEnt biased to observations of 5 and 10.
Panel b shows the interplay between strength of prior and assigned uncertainty to the observation at
10. Panel c compares the posterior entropy of the two as a function of the observation location.

Figure 2: Comparison of SNL and MaxEnt methods on a gravitational field simulation of a particle
moving through a fixed field with three attractors. a): weighted mean paths generated by SBI with
SNL (green) and MaxEnt (purple), alongside the path generated by the mean of the prior distribution
(dash-dotted grey), and the true path used to generate observations (dashed black). Target points
appear as black stars, and the attractors are black circles. b): Kernel density estimate of the posterior
distribution of parameters after fitting, alongside their respective priors.

3 Results and Discussion

The first example is a simulator f that is a linear function with Gaussian noise: given input θ,
f(θ) = rθ + ε, with ε ∼ N (0, σ) and parameter r with uniform prior. This example serves to
compare the MaxEnt approach with Bayesian inference. Our observation is a single point and we
treat it as an average constraint in the MaxEnt. In the Bayesian inference method, we must provide
some uncertainty with this point to create a probability distribution[29]. Bayesian inference balances
evidence with the prior distribution and here that is the ratio of our prior certainty (θ) with the
certainty of the observation (1/2σ). Figure 1 contrasts these two methods. Panel a shows how the
MaxEnt method leaves the variance of the simulator unchanged as we move the observed value.
The Hyper-Biased method updates hyperparameters to improve sampling as shown in Equation 3.
Panel b shows how the Bayesian inference case requires explicit choice between prior belief and
experimental uncertainty to match the observation at 10. Panel c shows how the MaxEnt method
keeps the distribution entropy maximized regardless of the observation value (x-axis).

For a second example, Figure 2 shows a comparison of SNL and MaxEnt reweighting on a unit
mass particle in a gravitational field of three attractors. The parameters for this simulation were m1,
m2, m3, v0x and v0y, the masses of the three attractors (fixed positions), and the initial velocity of
the particle, respectively. The particle’s path over time is shown in Figure 2a. The prior parameter
distribution was taken as a multivariate normal distribution centered at {m1 = 85,m2 = 40,m3 =
70, v0x = 12, v0y = −30}, with covariance matrix I × 50. This wide prior was chosen because
MaxEnt needs parameter support that overlaps with the observations we would like to fit. Fitting was
done using the SBI package for Python[30] with the SNL method,[27] and a custom implementation
of MaxEnt reweighting using Keras[31, 32]. Both methods used 2048 prior samples for fitting. SNL
used default parameters from the SBI package[30] and MaxEnt used the Adam optimizer with a
learning rate of 0.0001 with mean squared error for 30000 epochs and batch size 2048. The final
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posterior distributions are shown in Figure 2b. In order to compare these results, we computed the
cross-entropy of the prior and posterior produced by each method. These values were 5.09 for SBI
with SNL, and 3.43 for MaxEnt reweighting. This demonstrates how MaxEnt minimally alters the
prior distribution while still matching observations in expectation – the average path followed by the
MaxEnt-biased particle matches all target points, while matching the posterior to the prior’s shape
more closely than SNL.

Finally, we consider maximum entropy reweighting of an SEAIR epidemiology model. Epidemic
spreading in networks can be modeled as a reaction-diffusion process. The reaction corresponds
to an infection caused by interactions of subjects within a fully-mixed region or patch of varying
granularities (a meta-population), while diffusion corresponds to movement of people (of various
infection states) between patches [33]. In our example application, the meta-population system is
comprised of three isolated local populations (patches) connected via flows corresponding to migrating
individuals. The spreading process is represented through a temporally discretized ODE that includes
the spatial distribution of the population as well as their mobility patterns [34]. Populations in
each patch can be in any one of Susceptible (S), Exposed (E), Asymptomatic (A), Infected (I), and
Recovered (R). The choice for this particular flavor of compartments was inspired by its relevance in
modeling the evolution of the current COVID-19 pandemic [35, 36]. The connection between the
patches is defined based on an M ×M mobility matrix, where M corresponds to the number of
patches.

The empirical number of confirmed cases (compartment I) is typically noisy. Here, uncertainty
in case numbers was accounted for by adding random additive noise to the observations from the
reference trajectory. The reference trajectory was obtained from arbitrary epidemiology parameters
(see dashed lines in Figure 3.a) In our simulation, the infection begins in patch 1, propagating to
other patches according to the mobility matrix. Five randomly-selected data points within the first
half of the trajectory of the compartment I in patch 1 were considered as observations. Parameters
for this simulation were asymptomatic, infected and exposed periods along with the starting values
for I and A. Figure 3.b compares the performance of MaxEnt, least-squares, and ABC in fitting the
prior to the observations. The pyABC[37] package was used with default parameters, and the same
MaxEnt implementation was used with the SGD optimizer, a learning rate of 0.1, and loss of mean
squared error for 1000 epochs with a batch size of 8192. Compared to MaxEnt, the result from the
least squares method was a poor fit with high variance, as it over-fitted to observation noise. This
was shown by doing a 5-fold leave-one-out cross-validation of the observations and evaluating the
standard deviation at times t = 0, 125 and 250 for each method (inset in Figure 3.b). Out of all
methods evaluated, ABC had the least variance, but was computationally more expensive to run,
whereas MaxEnt can include more model parameters without additional computational cost.

Figure 3: Maximum entropy biasing of disease trajectory in a meta-population SEAIR model. a)
Unbiased trajectory in patch 1 for compartments S (blue), E (orange), A (green), I (red) and R
(purple) are shown with solid lines and the reference trajectory is in dashed lines. The colored
area represents the one-third higher and lower quantiles than average. Restraints (black circles)
are selected randomly from compartment I with additive noise. b) Comparing the performance of
MaxEnt (pink), Least-squares (blue), ABC (yellow) in fitting to reference model (black dashed line)
in patch 3, based on observations in patch 1. Table inset shows standard deviations from 5-fold cross
validation of the observations at three times.
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4 Conclusion

We have presented MaxEnt reweighting as an SBI method for altering an approximately-correct
simulator to agree with observations. This black box method can be used on arbitrary simulators
with arbitrary numbers of parameters, requiring only sufficient sampling of the prior distribution. We
demonstrated this by comparing with other SBI methods with three different simulators. MaxEnt
reweighting is effective and robust when data is scarce or expensive, and provably changes the prior
minimally to fit observations. Thus, MaxEnt reweighting is well-suited to the regime of nearly-correct
simulators when observed data is scarce or expensive.

Broader Impact

MaxEnt reweighting is a straightforward black box method that can be applied to arbitrary simulators
with few observations. Its runtime is independent of the number of parameters used by the simulator,
and it has been shown analytically[5, 8] to minimally change the prior to agree with observations. This
method fills a niche in the small-data, high-complexity regime of SBI parameter inference, because it
accurately and minimally biases a prior to match observations and does not scale in runtime with the
number of model parameters. The benefits of this biasing method is a stable biasing option in the
case when experimental observations of true data is limited and an initial model is well-trusted. This
could benefit anyone seeking to improve the accuracy of statistical models in such a situation. We do
not foresee anyone being disadvantaged by this research. Should this system fail, predictive models
which have been biased with this method will be inaccurate, which could result in negative outcomes
for anyone using such models to choose a course of action or make predictions. This method does
not make use of biases in data but rather can be used to account for and correct systematic error.
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