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Abstract

Predicting the dynamics of neural network parameters during training is one of the
key challenges in building a theoretical foundation for deep learning. A central
obstacle is that the motion of a network in high-dimensional parameter space
undergoes discrete finite steps along complex stochastic gradients derived from
real-world datasets. We circumvent this obstacle through a unifying theoretical
framework based on intrinsic symmetries embedded in a network’s architecture
that are present for any dataset. We show that any such symmetry imposes stringent
geometric constraints on gradients and Hessians, leading to an associated conserva-
tion law in the continuous-time limit of stochastic gradient descent (SGD), akin to
Noether’s theorem in physics. We further show that finite learning rates used in
practice can actually break these symmetry induced conservation laws. We apply
tools from finite difference methods to derive modified gradient flow, a differen-
tial equation that better approximates the numerical trajectory taken by SGD at
finite learning rates. We combine modified gradient flow with our framework of
symmetries to derive exact integral expressions for the dynamics of certain param-
eter combinations. We empirically validate our analytic predictions for learning
dynamics on VGG-16 trained on Tiny ImageNet. Overall, by exploiting symmetry,
our work demonstrates that we can analytically describe the learning dynamics of
various parameter combinations at finite learning rates and batch sizes for state of
the art architectures trained on any dataset.

Just like the fundamental laws of classical and quantum mechanics taught us how to control and
optimize the physical world for engineering purposes, a better understanding of the laws governing
neural network learning dynamics can have a profound impact on the optimization of artificial neural
networks. This raises a foundational question: what, if anything, can we quantitatively predict about
the learning dynamics of large-scale, non-linear neural network models driven by real-world datasets
and optimized via stochastic gradient descent with a finite batch size, learning rate, and with or
without momentum? In order to make headway on this extremely difficult question, existing works
have made major simplifying assumptions on the network, such as restricting to identity activation
functions [1]], infinite width layers [2]], or single hidden layers [3]. Many of these works have
also ignored the complexity introduced by stochasticity and discretization by only focusing on the
learning dynamics under gradient flow. In the present work, we make the first step in an orthogonal
direction. Rather than introducing unrealistic assumptions on the model or learning dynamics, we
uncover restricted, but meaningful, combinations of parameters with simplified dynamics that can
be solved exactly without introducing a single assumption. We make this fundamental contribution
by constructing a framework harnessing the geometry of the loss shaped by symmetry and realistic
continuous equations of learning.

* Equal contribution. Correspondence to kunin @stanford.edu & hidenori.tanaka @ntt-research.com

Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada.



1 Symmetries in the Loss shape Gradient and Hessian Geometries

While we initialize neural networks randomly, their gradients and Hessians at all points in training,
no matter the loss or dataset, obey certain geometric constraints. Some of these constraints have
been noticed previously as a from of implicit regularization [4} 5], while others have been leveraged
algorithmically in applications from network pruning [6]] to interpretability [[7]. Remarkably, all these
geometric constraints can be understood as consequences of numerous differentiable symmetries in
the loss introduced by neural network architectures. A set of parameters observes a differentiable
symmetry in the loss if the loss doesn’t change under a certain differentiable transformation of these
parameters. This invariance introduces associated geometric constraints on the gradient and Hessian.

Consider a function f(#) where § € R™. This function possesses a differentiable symmetry if it is
invariant under the differentiable action 1 of a group G on the parameter vector 0, i.e., if 6 — (6, )
where o € G, then F (0,a) = f (¢(0,a)) = f(0) for all (0, «). The existence of a symmetry
enforces a geometric structure on the gradient, VF'. Evaluating the gradient at the identity element
of G, so that (0, o) = 0, yields the result, (V f,9,1) = 0, which implies that the gradient V f
is perpendicular to the vector field 0,1 that generates the symmetry, for all . The symmetry also
enforces a geometric structure on the Hessian, HF'. Evaluating the Hessian at the identity element of
G yields the result, H f9p1)0,1 + 090,V f = 0, which constrains the Hessian Hf. See appendix [A]
for the derivation of these properties and other geometric consequences of symmetry.

We will now consider the specific setting of a neural network parameterized by 6 € R™, the training
loss £(#), and three families of symmetries (translation, scale, and rescale) that commonly appear in
modern network architectures.

Translation symmetry. Translation symmetry is defined by the group R and action ¢, (6) = 0+al 4
where 1 4 is the indicator vector for some subset .4 of the parameters {61, . .., 0,,}. The loss function
L thus possesses translation symmetry if £(0) = L(0+ a1 4) for all @ € R. Such a symmetry in turn
implies the loss gradient 9y L = g is orthogonal to the indicator vector %o = 1 4, (g,14) = 0, and
that the Hessian matrix H = 93 L has the indicator vector in its kernel, H1 4 = 0. Any network using
the softmax function gives rise to translation symmetry for the parameters immediately preceding the
function.

Scale symmetry. Scale symmetry is defined by the group GL (R) and action 6 — a4 ® 6 where
ay = aly + 1. The loss function possesses scale symmetry if £(0) = L(ayq ® 6) for all
« € GLT (R). This symmetry immediately implies the loss gradient is everywhere perpendicular to
the parameter vector itself 9,1, = 0 ©® L4 = 0.4, (g,0.4) = 0, and relates to the Hessian matrix,
where 09 L0, 0gt)o, = g diag(1a) = gu, as HO4 + g4 = 0. Batch normalization leads to scale
symmetry for the parameters immediately preceding the batch normalization layer.

Rescale symmetry. Rescale symmetry is defined by the group GL{ (R) and action 6 — a4, ®
a;é © 0 where A; and Ay are two disjoint sets of parameters. The loss function possesses rescale
symmetry if £(0) = L(a4, ® a;é ® ) for all @« € GL{(R). This symmetry immediately
implies the loss gradient is everywhere perpendicular to the sign inverted parameter vector 0,1 =
O, — 04, =0 (La, — 14a,), (9,04, — 04,) = 0 and relates to the Hessian matrix, where
09 L0 0pp = gdiag(La, —L1a,) = ga, — ga,. as H(04, —0a,) + ga, — ga, = 0. For networks
with continuous, homogeneous activation functions ¢(z) = ¢’(z)z (e.g. ReLU, Leaky ReLU, linear),
this symmetry emerges at every hidden neuron by considering all incoming and outgoing parameters
to the neuron.

2 Symmetry leads to Conservation Laws Under Gradient Flow

We now explore how geometric constraints on gradients and Hessians arising as a consequence of
symmetry, impact network learning dynamics. In this work we focus on stochastic gradient descent
(SGD), the workhorse of modern deep learning optimization. We will consider a model parameterized
by 0, a training dataset {z1,..., 2z} of size N, and a training loss £(0) = + Zfil £(0, z;) with
corresponding gradient g(6) = g—g.

The gradient descent update with learning rate 7 is §*+1) = (") — 5g(#(™)), which is a forward
Euler discretization with step size 1 of the ordinary differential equation (ODE) % = —g(6). In the



limit as n — 0, gradient descent exactly matches the dynamics of this ODE, which is commonly
referred to as gradient flow [8]. Equipped with a continuous model for the learning dynamics, we
now ask how do the dynamics interact with the geometric properties introduced by symmetries?

Symmetry leads to conservation. Strikingly similar to Noether’s theorem, which describes a
fundamental relationship between symmetry and conservation for physical systems governed by
Lagrangian dynamics, every symmetry of a network architecture has a corresponding conserved
quantity through training under gradient flow. Consider some subset of the parameters A that respects
either a translation, scale, or rescale symmetry. As shown in section the gradient of the loss g(0) is
always perpendicular to the vector field that generates the symmetry d,. Projecting the gradient
flow learning dynamics onto the generator vector field yields a differential equation <%, Oa¥) = 0.
Integrating this equation through time results in the conservation laws,

Translation: (04(t),1) = (0.4(0),1) (1)
Scale: [|04(t)> =10.4(0)]? (2)
Rescale: 0.4, (t)|” — [0.4,(t)]* = 0.4, (0)* — 0.4, (0) [ 3)

Each of these equations define a conserved constant of learning through training. For parameters with
translation symmetry, their sum is conserved, effectively constraining their dynamics to a hyperplane.
For parameters with scale symmetry, their euclidean norm is conserved, effectively constraining their
dynamics to a sphere. For parameters with rescale symmetry, their difference in squared euclidean
norm is conserved, effectively constraining their dynamics to a hyperbola.

3 A Realistic Continuous Model for Stochastic Gradient Descent

In section 2] we combined the geometric constraints introduced by symmetries with gradient flow
to derive conservation laws for simple combinations of parameters during training. Gradient flow
is too simple of a continuous model for realistic SGD training. Here, we construct a more realistic
continuous model for stochastic gradient descent.

Modeling weight decay. Explicit regularization through the addition of an L, penalty on the
parameters, with regularization constant ), is very common practice when training modern deep
learning models. For stochastic gradient descent, the result leads to the updated continuous model
do

G = —9(0) = M.

Modeling stochasticity. Stochastic gradients §;(6) arise when we consider a batch B of size S
drawn uniformly from the indices {1,..., N} forming the unbiased gradient estimate gz (f) =
% Zie B V{(0, x;). When the batch size is much smaller than the size of the dataset, S < N, then
we can model the batch gradient as an average of S i.i.d. samples from a noisy version of the true
gradient g(6). Using the central limit theorem, we assume §z(6) — g(6) is a Gaussian random
variable with mean ;1 = 0 and covariance matrix ¥ = £ G(0)G(6)T. Under this assumption, the

stochastic gradient update can be written as #(" 1 = (") — ng((")) 4 %G(@)S, where ¢ is a

standard normal random variable. This update is an Euler-Maruyama discretization with step size n
of the stochastic differential equation df = —g(6)dt + \/g G(0)dW,, where W, is a standard Wiener
process. Without any additional assumptions, the differential symmetries intrinsic to neural network
architectures add fundamental constraints on G(#). As shown in section the gradient of the loss,
regardless of the batch, is orthogonal to the generator vector field 0,1 associated with a symmetry.
In particular, the stochastic noise must also observe the same property, implying G(0)79,1 = 0. In
other words, the differential symmetry inherent in neural network architectures projects the noise
introduced by stochastic gradients to low rank subspaces.

Modeling discretization. The effect of discretization when modeling continuous dynamics is a well
studied problem in the numerical analysis of partial differential equations. One tool commonly used
in this setting, is modified equation analysis [9]], which determines how to better model discrete steps
with a continuous differential equation by introducing higher order spatial or temporal derivatives.

Gradient descent always moves in the direction of steepest descent on a loss function £ at each
step, however, due to the finite nature of the learning rate, it fails to remain on the continuous
steepest descent path given by gradient flow. [10}[11] and most recently [12]], demonstrate that the

gradient descent trajectory closely follows the steepest descent path of a modified loss function L.



The divergence between these trajectories fundamentally depends on the learning rate n and the
curvature H. As derived in [12], this divergence is given by the gradient correction f%H g, which is

the gradient of the norm —% |V£|. Thus, the modified loss is £ = £ + #|V£L|? and the modified
gradient flow ODE is % =—g(0) — 3H(0)g(0).

4 Combining Symmetry and Modified Gradient Flow to Derive Exact
Learning Dynamics

As shown in section 2] each symmetry results in a conserved quantity under gradient flow. We now
study how weight decay, momentum, stochastic gradients, and finite learning rates all interact to
break these conservation laws. Remarkably, even when using a more realistic continuous model
for stochastic gradient descent, as discussed in section [3] we can derive exact learning dynamics
for the previously conserved quantities. To do this we (i) consider a realistic continuous model for
SGD, (ii) project these learning dynamics onto the generator vector fields 0,1 associated with each
symmetry, (iii) harness the geometric constraints from section [I] to derive simplified ODEs, and
(iv) solve these ODEs to obtain exact dynamics for the previously conserved quantities. We first
consider the continuous model of SGD without momentum incorporating weight decay, stochasticity,
and modified loss. In this setting, the exact dynamics, for the parameter combinations tied to the
symmetries are,

Translation: (A 4(t),1) = e *(04(0),1) )
t

Scale:  [04(1)]> = e *(0.4(0)* + 77/ e g P dr (5)
0

Rescale: (0.4, (t)|* — [0.4,(t)|* = (6)

t
B0, OF = 04,07+ [ (|go [P oo, [) dr
0

Notice how these equations are equivalent to the conservation laws derived in section [2] when
n = A = 0. Remarkably, even in typical hyperparameter settings (weight decay, stochastic batches,
finite learning rates), these solutions match nearly perfectly with empirical results from modern neural
networks (VGG-16) trained on real-world datasets (Tiny ImageNet), as shown in Fig. [El We will
now discuss each equation individually.

Translation dynamics. For parameters with translation symmetry, equation |implies that the sum
of these parameters ({f 4(t), 1)) decays exponentially to zero at a rate proportional to the weight
decay. Equation [4] does not directly depend on the learning rate 1 nor any information of the
dataset or task. This is due to the lack of curvature in the gradient field for these parameters. This
implies that at initialization we can deterministically predict the trajectory for the parameter sum
as simple exponential functions with a rate defined by the weight decay. The first row in Fig. [Ta]
demonstrates this qualitatively, as all trajectories are smooth exponential functions that converge
faster for increasing levels of weight decay.

Scale dynamics. For parameters with scale symmetry, equation [5|implies that the norm for these
parameters (|6 4]?) is the sum of an exponentially decaying memory of the norm at initialization
and an exponentially weighted integral of gradient norms accumulated through training. Compared
to the translation dynamics, the scale dynamics do depend on the data through the gradient norms
accumulated throughout training. Without weight decay A = 0, the first term stays constant and the
second term grows monotonically. With weight decay A > 0, the first term decays monotonically
to zero, while the second term can decay or grow, but always stays positive. The second row in
Fig. [Ta] demonstrates these qualitative relationships. Without weight decay the norms increases
monotonically as predicted and with weight decay the dynamics are non-monotonic and present
more complex behavior. To better understand the forces driving these complex dynamics, we can
examine the time derivative of equation L19.4(t))2 = —2X|04(1)]* + 1 |g.4|” . From this equation
we see that there is a competition between a centripetal effect due to weight decay (—2A|0.4(¢)[?)

and a centrifugal effect due to discretization (7 |g A|2). The centripetal effect due to weight decay
is a direct consequence of its regularizing influence, pulling the parameters towards the origin. The
centrifugal effect due to discretization originates from the spherical geometry of the gradient field in
parameter space — because scale symmetry implies the gradient is always orthogonal to the parameter



itself, each discrete update with a finite learning rate effectively pushes the parameters away from
the origin. At the stationary state of the dynamics, these forces will balance leading the dynamics
of these parameters to be constrained to the surface of a high-dimensional sphere. In particular, at

stationarity, then -|6(¢)|?> = 0, which gives the condition w(t) = |%| /10| =

%. Consistent with

the results of [13]], this implies that at stationarity the angular speed w(t) of the weights is constant
and governed only by the learning rate 77 and weight decay constant .

Rescale dynamics. For parameters with rescale
symmetry, equation [f] is the sum of an expo-
nentially decaying memory of the difference
in norms at initialization and an exponentially
weighted integral of difference in gradient norms
accumulated through training. Similar to the
scale dynamics, the rescale dynamics do depend
on the data through the gradient norms, however
unlike the scale dynamics we have no guarantee
that the integral term is always positive. This
leads to quite sophisticated, complex dynamics,
consistent with the third row in Fig. [Ta] Despite
the complexity, our theory, nevertheless, quanti-
tatively matches the empirics. The only apparent
pattern from the empirics is that for large enough
weight decay, the regularization dominates any
complexity introduced by the gradient norms
and the difference in parameter norms decays
exponentially to zero.

Harmonic oscillation with momentum As
shown in Fig.[Ib]and explained in appendix [B]
if we consider a continuous model of SGD with
momentum then the solution we obtain take the
form of driven harmonic osccilators where the
driving force is given by the gradient norms, the
friction is defined by the momentum constant,
the spring coefficient is defined by the regular-
ization rate, and the mass is defined by the the
learning rate and momentum constant.

5 Conclusion

Despite being the central guiding principle in the
exploration of the physical world [14}[15], sym-
metry has been underutilized in understanding
the mechanics of neural networks. In this paper,
we constructed a unifying theoretical framework
harnessing the geometric properties of symme-
try and realistic continuous equations for learn-
ing dynamics modeling weight decay, momen-
tum, stochasticity, and discretization. We use
this framework to derive exact dynamics for
meaningful combinations of parameters, which
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(a) Exact dynamics of VGG-16 on Tiny ImageNet.
We plot the column sum of the final linear layer (top
row) and the difference between squared channel norms
of the fifth and fourth convolutional layer (bottom row)
of a VGG-16 model without batch normalization. We
plot the squared channel norm of the second convolution
layer (middle row) of a VGG-16 model with batch nor-
malization. Both models are trained on Tiny ImageNet
with SGD with learning rate n = 0.1, weight decay A,
batch size S = 256, for 100 epochs . Colored lines
are empirical and black dashed lines are the theoretical
predictions from equations (@), (5). and (©).

B =09 B =0.99

0.00.4081.216 0.00408121.6 0.00.408121.6
Time (7 x steps)

(b) Momentum leads to harmonic oscillation. Here
we use the same training setup as above with weight
decay A = 5x 10™% and momentum 3 € {0, 0.9,0.99}.
See appendix [B]for details of how momentum leads to
harmonic motion.

we experimentally verified on large scale neural networks and datasets. For example, in the case
of a VGG-16 model with batch normalization trained on Tiny-ImageNet (one of the model/dataset
combinations we considered in section[d) there are 12, 751 distinct parameter combinations whose
dynamics we can analytically describe. Overall, this work provides the first solid step towards the
mechanics of learning in neural networks.



Broader Impact

As we deploy deep neural networks in society, building solid theoretical foundation of the training
dynamics is crucial to make them efficient, reliable, and bias-free. Our work provides quantitative
predictions that are applicable even in large scale models and dataset helping us achieve these goals.
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A Symmetry and Conservation Laws

Here we derive in detail the geometric properties of the loss landscape introduced by symmetry, as
discussed in section Consider a function f(6) where # € R™. This function possesses a symmetry
if it is invariant under the action v of a group G on the parameter vector 6, i.e., if § — (6, )
where a € G, then F' (0,a) = f (¢(0,c)) = f(0) for all (0, «). Symmetry enforces a geometric
relationship between the gradient VF' and Hessian HF of the composition F'(6, ) with the gradient
V[ and Hessian Hf of the original function f(#). This relationship can be described by five
constraints on V f and Hf. Considering these general formulae when f(6) = £(0), the training loss
of a neural network, yields fifteen distinct equations describing the geometrical relationships between
architectural symmetries and the loss landscapes, some of which have been identified individually in
existing literature (Table [I).

Translation Scale Rescale
VF Og I’ — [1el, (170, [18] (5]
0o F — (191, [201 (41,1210, [22]
8§F — [19], [18] —
HF 090, F — — _
02F — — [22]

Table 1: Unifying existing literature through symmetry. Here we provide references to existing
literature describing geometric properties of either the gradient or Hessian introduced by a network’s
architecture. All of these properties can be unified as consequences of either a translation, scale, or
rescale symmetry in the training loss.

A.1 Gradient Geometry

If a function f posses a symmetry, then there exists a geometric constraint on the relationship between
the gradients VF and V f at all (0, o),

VF - O F\ _ [(0pFOop\ (VS
T \OoF) T \OpFOy) 0 )
The top element of the gradient relationship, 9y F, evaluated at any (6, «), yields the property
g vf‘w(g,a) = vf|97 )

which describes how the symmetry transformation affects the function’s gradients despite leaving the
output unchanged. The bottom element of the gradient relationship, d, F, evaluated at the identity
element of G so that ¢)(6, o) = 0, yields the property

(Vf,0a1) =0, ®)

which implies the gradient V f is perpendicular to the vector field 0,1 that generates the symmetry,
for all 4. In the specific setting when f(0) = L£(0), the training loss of a neural network, these
gradient properties are summarized in Table [2] for the translation, scale, and rescale symmetries
described in section[Il

Translation Scale Rescale
9(0) = g (¥(0,a)) diaglaa)g (¥(0,a)) diag(as, ©ayl)g(®(0,a))
g(0) L 14 04 04, — 04,

Table 2: Geometric properties of the gradient. The gradients of a neural network with either
translation, scale or rescale symmetry observe certain geometric properties no matter the dataset or
step in training.

Notice that the first row of Table [2]implies that symmetry transformations affect learning dynamics
governed by gradient descent for scale and rescale symmetries, while it does not for translation



symmetry. These observations are in agreement with [17] who has shown that effective learning rate
is inversely proportional to the norm of parameters immediately preceding the batch normalization
layers and [18]] who have noticed that SGD is not invariant to the rescale symmetry that the network
output respects and proposed Path-SGD to fix the discrepancy.

A.2 Hessian Geometry

If a function f posses a symmetry, then there also exists a geometric constraint on the relationship
between the Hessian matrices HF and H f at all (6, ),

p— ((BF  00aF\ _ ( 0uF O30+ O3F(9p0)? O2Fgp0ath + 0yF0s0at \ _ (Hf 0
N0t F  02F ) T \02F0p00u1 + 0y F0g0aty  (0a))TOLFOu) + (0, F)T02¢) ~\ 0 0)°

The first diagonal element, 83F , evaluated at any (0, «), yields the property
Gt V flyo.0) + (000) Hl g0y = Hflg, ©)

which describes how the symmetry transformation affects the function’s Hessian despite leaving the
output unchanged. The off-diagonal elements, 00, F = 0,0y F, evaluated at the identity element of
G so that ¥(0, ) = 6, yields the property

Hf0p10at) + 060aV [ = 0, (10)
which implies the geometry of gradient and Hessian are connected through the action of the symmetry.
Lastly, the second diagonal element, 92 F, represents an equality, evaluated at the identity element of
G, yields the property

(00t)THF (9a¥)) + (V,050) = 0, (1D

which combines the geometric relationships in equation [§]and equation[I0} In the specific setting
when f(0) = L£(0), the training loss of a neural network, these Hessian properties are summarized in
Table E]for the translation, scale, and rescale symmetries described in section E}

Translation Scale Rescale
H@O)= H(0,) dag(aZ)H (40, a)) diag(e, © o 2)H(4(0,a))
0= H1y HOA+ga HO4 —04,) + 94, — 9a,
0= 1TAH1A QLHH-A (0.»41 - oAz)TH(Hfh - 0./42) + gA, 0.41 + gA29A2

Table 3: Geometric properties of the Hessian. The Hessian matrix of a neural network with either
translation, scale or rescale symmetry observe certain geometric properties no matter the dataset or
step in training.

B Learning Dynamics with Momentum

Modeling momentum. Momentum is a common extension to SGD that uses an exponentially
moving average of gradients to update parameters rather than a single gradient evaluation [23].
The method introduces two additional hyperparameters, a damping coefficient o and a momentum
coefficient /3, and applies the two step update equation, ("1 = (") — py(*+1) where v(*+1) =
Bv™ 4 (1 — a)g(6™). When @ = B = 0, we regain classic gradient descent. In general, o
effectively reduces the learning rate and [ controls how past gradients are used in future updates
resulting in a form of “inertia” accelerating and smoothing the descent trajectory. Rearranging the
two-step update equation, we find that gradient descent with momentum is a first-order discretization
with step size 7)(1 — &) of the ODE, (1 — 3)%¢ = —g(0).

Modified flow. Rather than modifying gradient flow with higher order “spatial” derivatives of the
loss function, here we introduce higher order temporal derivatives. We start by assuming the existence
of a continuous trajectory 0(t) that weaves through the discrete steps taken by gradient descent and
then identify the differential equation that generates the trajectory. Rearranging the update equation
for gradient descent, ;11 = 0; — ng(0;), and assuming 0(t) = 6; and 0(t + n) = 0,41, gives

0(t+n)—0(t)
n

the equality —g(6;) = , which Taylor expanding the right side results in the differential



equation —g(0;) = % + g% + O(n?). Notice that in the limit as  — 0 we regain gradient

flow. For small 1, we obtain a modified version of gradient flow with an additional second-order

2 . . . . . . . .
term, ‘é—f =—g(0) — g‘;—tﬁ. This approach to modifying first-order differential equation with higher
order temporal derivatives was applied by [24] to construct a more realistic continuous model for
momentum.

Harmonic oscillation with momentum. We will now consider a continuous model of SGD with
momentum. We consider the continuous model incorporating weight decay, momentum, stochasticity,
and modified flow. Under this model, the solutions we obtain take the form of driven harmonic
oscillators where the driving force is given by the gradient norms, the friction is defined by the
momentum constant, the spring coefficient is defined by the regularization rate, and the mass is
defined by the the learning rate and momentum constant. For most standard hyperparameter choices,
these solutions are in the overdamped setting and align well with the first-order solutions for SGD
without momentum up to a time rescaling, as shown in the left and middle panel of Fig.[Tb] However,
for large values of beta we can push the solution into the underdamped regime where we would
expect harmonic oscillation and indeed, we can empirically verify our predictions, even at scale for
VGG-16 trained on Tiny ImageNet, as in right panel of Fig. [Ib]
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