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Abstract

Predicting the dynamics of neural network parameters during training is one of the
key challenges in building a theoretical foundation for deep learning. A central
obstacle is that the motion of a network in high-dimensional parameter space
undergoes discrete finite steps along complex stochastic gradients derived from
real-world datasets. We circumvent this obstacle through a unifying theoretical
framework based on intrinsic symmetries embedded in a network’s architecture
that are present for any dataset. We show that any such symmetry imposes stringent
geometric constraints on gradients and Hessians, leading to an associated conserva-
tion law in the continuous-time limit of stochastic gradient descent (SGD), akin to
Noether’s theorem in physics. We further show that finite learning rates used in
practice can actually break these symmetry induced conservation laws. We apply
tools from finite difference methods to derive modified gradient flow, a differen-
tial equation that better approximates the numerical trajectory taken by SGD at
finite learning rates. We combine modified gradient flow with our framework of
symmetries to derive exact integral expressions for the dynamics of certain param-
eter combinations. We empirically validate our analytic predictions for learning
dynamics on VGG-16 trained on Tiny ImageNet. Overall, by exploiting symmetry,
our work demonstrates that we can analytically describe the learning dynamics of
various parameter combinations at finite learning rates and batch sizes for state of
the art architectures trained on any dataset.

Just like the fundamental laws of classical and quantum mechanics taught us how to control and
optimize the physical world for engineering purposes, a better understanding of the laws governing
neural network learning dynamics can have a profound impact on the optimization of artificial neural
networks. This raises a foundational question: what, if anything, can we quantitatively predict about
the learning dynamics of large-scale, non-linear neural network models driven by real-world datasets
and optimized via stochastic gradient descent with a finite batch size, learning rate, and with or
without momentum? In order to make headway on this extremely difficult question, existing works
have made major simplifying assumptions on the network, such as restricting to identity activation
functions [1], infinite width layers [2], or single hidden layers [3]. Many of these works have
also ignored the complexity introduced by stochasticity and discretization by only focusing on the
learning dynamics under gradient flow. In the present work, we make the first step in an orthogonal
direction. Rather than introducing unrealistic assumptions on the model or learning dynamics, we
uncover restricted, but meaningful, combinations of parameters with simplified dynamics that can
be solved exactly without introducing a single assumption. We make this fundamental contribution
by constructing a framework harnessing the geometry of the loss shaped by symmetry and realistic
continuous equations of learning.
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1 Symmetries in the Loss shape Gradient and Hessian Geometries

While we initialize neural networks randomly, their gradients and Hessians at all points in training,
no matter the loss or dataset, obey certain geometric constraints. Some of these constraints have
been noticed previously as a from of implicit regularization [4, 5], while others have been leveraged
algorithmically in applications from network pruning [6] to interpretability [7]. Remarkably, all these
geometric constraints can be understood as consequences of numerous differentiable symmetries in
the loss introduced by neural network architectures. A set of parameters observes a differentiable
symmetry in the loss if the loss doesn’t change under a certain differentiable transformation of these
parameters. This invariance introduces associated geometric constraints on the gradient and Hessian.

Consider a function f(�) where � ∈ Rm. This function possesses a differentiable symmetry if it is
invariant under the differentiable action  of a group G on the parameter vector �, i.e., if � 7→  (�; �)
where � ∈ G, then F (�; �) = f ( (�; �)) = f(�) for all (�; �). The existence of a symmetry
enforces a geometric structure on the gradient, ∇F . Evaluating the gradient at the identity element
of G, so that  (�; �) = �, yields the result, 〈∇f; @� 〉 = 0; which implies that the gradient ∇f
is perpendicular to the vector field @� that generates the symmetry, for all �. The symmetry also
enforces a geometric structure on the Hessian, HF . Evaluating the Hessian at the identity element of
G yields the result, Hf@� @� +@�@� ∇f = 0; which constrains the Hessian Hf . See appendix A
for the derivation of these properties and other geometric consequences of symmetry.

We will now consider the specific setting of a neural network parameterized by � ∈ Rm, the training
loss L(�), and three families of symmetries (translation, scale, and rescale) that commonly appear in
modern network architectures.

Translation symmetry. Translation symmetry is defined by the group R and action  �(�) = �+�1A
where 1A is the indicator vector for some subsetA of the parameters {�1; : : : ; �m}. The loss function
L thus possesses translation symmetry if L(�) = L(�+�1A) for all � ∈ R. Such a symmetry in turn
implies the loss gradient @�L = g is orthogonal to the indicator vector @� � = 1A, 〈g;1A〉 = 0; and
that the Hessian matrixH = @2

�L has the indicator vector in its kernel, H1A = 0. Any network using
the softmax function gives rise to translation symmetry for the parameters immediately preceding the
function.

Scale symmetry. Scale symmetry is defined by the group GL+
1 (R) and action � 7→ �A � � where

�A = �1A + 1Ac . The loss function possesses scale symmetry if L(�) = L(�A � �) for all
� ∈ GL+

1 (R). This symmetry immediately implies the loss gradient is everywhere perpendicular to
the parameter vector itself @� � = � � 1A = �A, 〈g; �A〉 = 0; and relates to the Hessian matrix,
where @�L@�@� � = g diag(1A) = gA, as H�A + gA = 0: Batch normalization leads to scale
symmetry for the parameters immediately preceding the batch normalization layer.

Rescale symmetry. Rescale symmetry is defined by the group GL+
1 (R) and action � 7→ �A1

�
�−1
A2
� � where A1 and A2 are two disjoint sets of parameters. The loss function possesses rescale

symmetry if L(�) = L(�A1
� �−1

A2
� �) for all � ∈ GL+

1 (R). This symmetry immediately
implies the loss gradient is everywhere perpendicular to the sign inverted parameter vector @� =
�A1
− �A2

= � � (1A1
− 1A2

), 〈g; �A1
− �A2

〉 = 0 and relates to the Hessian matrix, where
@�L@�@� = gdiag(1A1 − 1A2) = gA1 − gA2 , as H(�A1 − �A2) + gA1 − gA2 = 0. For networks
with continuous, homogeneous activation functions �(z) = �′(z)z (e.g. ReLU, Leaky ReLU, linear),
this symmetry emerges at every hidden neuron by considering all incoming and outgoing parameters
to the neuron.

2 Symmetry leads to Conservation Laws Under Gradient Flow

We now explore how geometric constraints on gradients and Hessians arising as a consequence of
symmetry, impact network learning dynamics. In this work we focus on stochastic gradient descent
(SGD), the workhorse of modern deep learning optimization. We will consider a model parameterized
by �, a training dataset {x1; : : : ; xN} of size N , and a training loss L(�) = 1

N

PN
i=1 ‘(�; xi) with

corresponding gradient g(�) = @L
@� .

The gradient descent update with learning rate � is �(n+1) = �(n) − �g(�(n)), which is a forward
Euler discretization with step size � of the ordinary differential equation (ODE) d�dt = −g(�). In the
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limit as � → 0, gradient descent exactly matches the dynamics of this ODE, which is commonly
referred to as gradient flow [8]. Equipped with a continuous model for the learning dynamics, we
now ask how do the dynamics interact with the geometric properties introduced by symmetries?

Symmetry leads to conservation. Strikingly similar to Noether’s theorem, which describes a
fundamental relationship between symmetry and conservation for physical systems governed by
Lagrangian dynamics, every symmetry of a network architecture has a corresponding conserved
quantity through training under gradient flow. Consider some subset of the parametersA that respects
either a translation, scale, or rescale symmetry. As shown in section 1, the gradient of the loss g(�) is
always perpendicular to the vector field that generates the symmetry @� . Projecting the gradient
flow learning dynamics onto the generator vector field yields a differential equation 〈d�dt ; @� 〉 = 0.
Integrating this equation through time results in the conservation laws,

Translation: 〈�A(t);1〉 = 〈�A(0);1〉 (1)

Scale: |�A(t)|2 = |�A(0)|2 (2)

Rescale: |�A1
(t)|2 − |�A2

(t)|2 = |�A1
(0)|2 − |�A2

(0)|2 (3)

Each of these equations define a conserved constant of learning through training. For parameters with
translation symmetry, their sum is conserved, effectively constraining their dynamics to a hyperplane.
For parameters with scale symmetry, their euclidean norm is conserved, effectively constraining their
dynamics to a sphere. For parameters with rescale symmetry, their difference in squared euclidean
norm is conserved, effectively constraining their dynamics to a hyperbola.

3 A Realistic Continuous Model for Stochastic Gradient Descent

In section 2 we combined the geometric constraints introduced by symmetries with gradient flow
to derive conservation laws for simple combinations of parameters during training. Gradient flow
is too simple of a continuous model for realistic SGD training. Here, we construct a more realistic
continuous model for stochastic gradient descent.

Modeling weight decay. Explicit regularization through the addition of an L2 penalty on the
parameters, with regularization constant �, is very common practice when training modern deep
learning models. For stochastic gradient descent, the result leads to the updated continuous model
d�
dt = −g(�)− ��.

Modeling stochasticity. Stochastic gradients ĝB(�) arise when we consider a batch B of size S
drawn uniformly from the indices {1; : : : ; N} forming the unbiased gradient estimate ĝB(�) =
1
S

P
i∈B∇‘(�; xi). When the batch size is much smaller than the size of the dataset, S � N , then

we can model the batch gradient as an average of S i.i.d. samples from a noisy version of the true
gradient g(�). Using the central limit theorem, we assume ĝB(�) − g(�) is a Gaussian random
variable with mean � = 0 and covariance matrix � = 1

SG(�)G(�)|. Under this assumption, the
stochastic gradient update can be written as �(n+1) = �(n) − �g(�(n)) + �√

S
G(�)�, where � is a

standard normal random variable. This update is an Euler-Maruyama discretization with step size �
of the stochastic differential equation d� = −g(�)dt+

p
�
SG(�)dWt, where Wt is a standard Wiener

process. Without any additional assumptions, the differential symmetries intrinsic to neural network
architectures add fundamental constraints on G(�). As shown in section 1, the gradient of the loss,
regardless of the batch, is orthogonal to the generator vector field @� associated with a symmetry.
In particular, the stochastic noise must also observe the same property, implying G(�)|@� = 0. In
other words, the differential symmetry inherent in neural network architectures projects the noise
introduced by stochastic gradients to low rank subspaces.

Modeling discretization. The effect of discretization when modeling continuous dynamics is a well
studied problem in the numerical analysis of partial differential equations. One tool commonly used
in this setting, is modified equation analysis [9], which determines how to better model discrete steps
with a continuous differential equation by introducing higher order spatial or temporal derivatives.

Gradient descent always moves in the direction of steepest descent on a loss function L at each
step, however, due to the finite nature of the learning rate, it fails to remain on the continuous
steepest descent path given by gradient flow. [10, 11] and most recently [12], demonstrate that the
gradient descent trajectory closely follows the steepest descent path of a modified loss function eL.
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The divergence between these trajectories fundamentally depends on the learning rate � and the
curvature H . As derived in [12], this divergence is given by the gradient correction − 1

2Hg, which is
the gradient of the norm −�4 |∇L|. Thus, the modified loss is eL = L + �

4 |∇L|2 and the modified
gradient flow ODE is d�

dt = −g(�)− �
2H(�)g(�).

4 Combining Symmetry and Modified Gradient Flow to Derive Exact
Learning Dynamics

As shown in section 2, each symmetry results in a conserved quantity under gradient flow. We now
study how weight decay, momentum, stochastic gradients, and finite learning rates all interact to
break these conservation laws. Remarkably, even when using a more realistic continuous model
for stochastic gradient descent, as discussed in section 3, we can derive exact learning dynamics
for the previously conserved quantities. To do this we (i) consider a realistic continuous model for
SGD, (ii) project these learning dynamics onto the generator vector fields @� associated with each
symmetry, (iii) harness the geometric constraints from section 1 to derive simplified ODEs, and
(iv) solve these ODEs to obtain exact dynamics for the previously conserved quantities. We first
consider the continuous model of SGD without momentum incorporating weight decay, stochasticity,
and modified loss. In this setting, the exact dynamics, for the parameter combinations tied to the
symmetries are,

Translation: 〈�A(t);1〉 = e−�t〈�A(0);1〉 (4)

Scale: |�A(t)|2 = e−2�t|�A(0)|2 + �

Z t

0

e−2�(t−�) |gA|2 d� (5)

Rescale: |�A1(t)|2 − |�A2(t)|2 = (6)

e−2�t(|�A1
(0)|2 − |�A2

(0)|2) + �

Z t

0

e−2�(t−�)
���g�A1

��2 − ��g�A2

��2� d�
Notice how these equations are equivalent to the conservation laws derived in section 2 when
� = � = 0. Remarkably, even in typical hyperparameter settings (weight decay, stochastic batches,
finite learning rates), these solutions match nearly perfectly with empirical results from modern neural
networks (VGG-16) trained on real-world datasets (Tiny ImageNet), as shown in Fig. 1a. We will
now discuss each equation individually.

Translation dynamics. For parameters with translation symmetry, equation 4 implies that the sum
of these parameters (〈�A(t);1〉) decays exponentially to zero at a rate proportional to the weight
decay. Equation 4 does not directly depend on the learning rate � nor any information of the
dataset or task. This is due to the lack of curvature in the gradient field for these parameters. This
implies that at initialization we can deterministically predict the trajectory for the parameter sum
as simple exponential functions with a rate defined by the weight decay. The first row in Fig. 1a
demonstrates this qualitatively, as all trajectories are smooth exponential functions that converge
faster for increasing levels of weight decay.

Scale dynamics. For parameters with scale symmetry, equation 5 implies that the norm for these
parameters (|�A|2) is the sum of an exponentially decaying memory of the norm at initialization
and an exponentially weighted integral of gradient norms accumulated through training. Compared
to the translation dynamics, the scale dynamics do depend on the data through the gradient norms
accumulated throughout training. Without weight decay � = 0, the first term stays constant and the
second term grows monotonically. With weight decay � > 0, the first term decays monotonically
to zero, while the second term can decay or grow, but always stays positive. The second row in
Fig. 1a demonstrates these qualitative relationships. Without weight decay the norms increases
monotonically as predicted and with weight decay the dynamics are non-monotonic and present
more complex behavior. To better understand the forces driving these complex dynamics, we can
examine the time derivative of equation 5, d

dt |�A(t)|2 = −2�|�A(t)|2 + � |gA|2 : From this equation
we see that there is a competition between a centripetal effect due to weight decay (−2�|�A(t)|2)
and a centrifugal effect due to discretization (� |gA|2). The centripetal effect due to weight decay
is a direct consequence of its regularizing influence, pulling the parameters towards the origin. The
centrifugal effect due to discretization originates from the spherical geometry of the gradient field in
parameter space – because scale symmetry implies the gradient is always orthogonal to the parameter
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