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Abstract

Bayesian experimental design (BED) aims at designing an experiment to maximize
the information gathering from the collected data. The optimal design is usually
achieved by maximizing the mutual information (MI) between the data and the
model parameters. When the analytical expression of the MI is unavailable, e.g.,
having implicit models with intractable data distributions, a neural network-based
lower bound of the MI was recently proposed and a gradient ascent method was
used to maximize the lower bound [1]. However, the approach in [1] requires a
pathwise sampling path to compute the gradient of the MI lower bound with respect
to the design variables, and such a pathwise sampling path is usually inaccessible
for implicit models. In this work, we propose a hybrid gradient approach that
leverages recent advances in variational MI estimator and evolution strategies (ES)
combined with black-box stochastic gradient ascent (SGA) to maximize the MI
lower bound. This allows the design process to be achieved through a unified
scalable procedure for implicit models without sampling path gradients. Several
experiments demonstrate that our approach significantly improves the scalability
of BED for implicit models in high-dimensional design space.

1 Introduction

Experimental design plays an essential role in all scientific disciplines. Our ultimate goal is to
determine designs that maximize the information gathered through the experiments so that improve
our understanding on model comparison or parameter estimations. A broadly used approach is
Bayesian experimental design (BED) [2] that aims to find an optimal design ξ∗ to maximize a utility
function I(ξ), which is typically defined by the mutual information (MI) between data and model
parameters. Typically, the BED framework begins with a Bayesian model of the experimental process,
including a prior distribution p(θ) and a likelihood p(y|θ, ξ). The information gained about θ from
running the experiment with design ξ and observed outcome y can be interpreted by the reduction in
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entropy from the prior to posterior

IG(y, ξ) = Q[p(θ)]−Q[p(θ|y, ξ)]. (1)

To define a metric to quantify the utility of the design ξ before running experiments, an expected
information gain (EIG), I(ξ) is often used:

I(ξ) = Ep(y|ξ)[Q[p(θ)]−Q[p(θ|y, ξ)]]. (2)

Eq. (2) can also be interpreted as a mutual information (MI) between θ and y with a specified ξ,

IMI(ξ) = Ep(θ)p(y|θ,ξ)
[
log

p(y|θ, ξ)

p(y|ξ)

]
(3)

The Bayesian optimal design is therefore defined as

ξ∗ = arg max
ξ∈Ξ

IMI(ξ) (4)

where Ξ is the feasible design domain. The most challenging task in BED framework is how to
efficiently and accurately estimate IMI(ξ) in Eq. (3) and optimize IMI(ξ) via Eq. (4) to obtain the
optimal design ξ∗.

Most of the existing BED studies focus on the explicit models [2, 3, 4, 5] in which the likelihood
is analytically known, but in natural and physical science, a more common scenario is the implicit
models [6, 7], in which the likelihood is intractable but sampling is possible. In other words, the
implicit model is specified based on a stochastic data generating simulator and typically has no access
to the analytical form and the gradients of the joint density p(θ,y|ξ) and marginal density p(y|ξ).
The resulting BED scheme shares a two-stage feature: build a pointwise estimator of I(ξ) and then
feed this “black-box" estimator to a separate outer-level optimizer such as Bayesian optimization to
find the optimal design ξ∗. This scheme substantially increases the overall computational cost and is
challenging in scaling the BED to a high dimensional design space.

Recent studies [1, 5, 8] alleviate the challenges by using stochastic gradient-based approaches but
they rely on the models with tractable likelihood functions or assume the gradients can be reasonably
approximated by pathwise gradient estimators with sampling path, unlike the scope of our paper that
focuses on the BED for implicit models without gradients. We develop a general scalable framework
that can jointly optimize a unified objective with respect to both the variational MI bound and the
design using a hybrid gradient ascent approach. The key contributions are summarized as follows:
• We propose a hybrid gradient approach that leverages recent advances in variational MI estimator

and guided evolution strategies (ES) to maximize the MI lower bound;
• We incorporate a smoothed estimator of the MI lower bound via clipped density ratios to reduce

the variance in the MI bound estimator and the estimation of the posterior samples;
• We demonstrate the superior performance of our proposed approach on a toy noisy linear problem

and a real quantum control problem, specifically in high dimensional design spaces.

2 Hybrid Gradient Method for BED

Here, we aim to find the optimal design ξ∗ by maximizing a MI lower bound rather than exactly
estimating MI with high accuracy. Estimating and optimizing MI is core to many machine learning
research but it has been a challenge to bounding MI in high dimensions.

Mutual information estimators Belghazi et al. [9] proposed to estimate the MI using gradient
descent over neural networks and argued that the lower bound can be tightened by optimizing the
neural network parameters. The MI estimator is typically named by MINE-f or f -GAN KL [10]

IMINE(ξ,ψ) = Ep(θ,y|ξ)[Tψ(θ,y)]− logEp(θ)p(y|ξ)[eTψ(θ,y)] (5)

where Tψ(θ,y) is a neural network that is parametrized by ψ with model parameters θ and data y as
inputs. Incorporating neural network parameters ψ with design parameters ξ, the BED problem can
be formulated by maximizing the overall objective

ξ∗ = arg max
ξ

max
ψ
{IMINE(ξ,ψ)} . (6)
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The optimal design ξ∗ is obtained by maximizing the MI estimator in Eq. (5) through a joint gradient-
based algorithm or a separate gradient-free update scheme of ξ and ψ. The effectiveness for the MI
estimation and optimization therefore becomes very important to the BED problem. Unfortunately,
IMINE exhibits a high variance that could grows exponentially with the ground truth MI and leads to
poor bias-variance trade-offs in practice [11, 12]. To address the high-variance issue in the IMINE

estimator, we propose to use a smoothed MI lower-bound estimator ISMILE [12] with hyperparameter
τ that clips the density ratios when estimating the partition function:

ISMILE(ξ,ψ) = Ep(θ,y|ξ)[Tψ(θ,y)]− logEp(θ)p(y|ξ)[clip(eTψ(θ,y), e−τ , eτ )] (7)

where clip function clip(u, v,w) = max(min(u,w), v). The choice of τ affects the bias-variance
trade-off: when τ →∞, ISMILE converges to IMINE; with a smaller τ , the variance is reduced at the
cost of increasing bias [12]. The improved MI estimation via variance reduction techniques is benefit
to the optimization process in Eq. (7) and thus leads to a robust final optimal design ξ∗.

Evolutionary strategies When the gradient of the MI lower bound is inaccessible, a popular
zero-order approach for estimating the gradient is Gaussian Smoothing (GS) (or called Evolution
Strategies [13]). The smoothed loss is defined by

fσ(ξ) = Eε∼N (0,Id) [f(ξ + σu)] = (2π)−n/2
∫
Rn

f(ξ + σε)e−‖ε‖
2/2dε (8)

where N (0, Id) is the d-dimensional standard Gaussian distribution, and σ > 0 is the smoothing
radius. The standard GS represents the ∇fσ(ξ) as an d-dimensional integral and estimate it by
drawing M random samples {εi}Mi=1 from N (0, Id), i.e.,

∇fσ(ξ) =
1

σ
Eε∼N (0,Id) [f(ξ + σε) ε] ≈ 1

Mσ

M∑
i=1

f(ξ + σεi)εi. (9)

The MC estimator in Eq. (9) is usually used as an unbiased estimator of the local gradient ∇F (x) by
exploiting the fact that limσ→0∇Fσ(x) = ∇F (x), where the smoothing radius σ is often set to a
small value. However, the traditional GS tends to a high variance for high dimensional space.

Several advances in evolution strategies (ES) [14, 15, 16, 17] addressed these issues using variance
reduction and dimension reduction strategies. More recently, a Guided ES method [18] is proposed
by optimally using surrogate gradient directional along with a random search. Specifically, Guided
ES generates a subspace by keeping track of the previous k surrogate gradients during optimization,
and leverages this prior information by changing the distribution of εi in Eq. (9) to N (0,Σ) with
Σ = (α/n) · In + (1 − α)/k · UUT where k and n are the subspace and parameter dimensions
respectively, U denotes an n× k orthonormal basis for the subspace, and α is a hyperparameter that
trades off variance between the subspace and full parameter space. The improved search distribution
allows a low-variance estimate of the descent direction∇fGσ (ξ).

Stochastic approximate gradient ascent (SAGA) method We propose a hybrid gradient method
by maximizing ISMILE(ξ,ψ) by gradient ascent on NN parameters ψ combined with an approximate
gradient ∇fGσ (ξ) using Guided ES on design parameters ξ. Starting from an initial design ξ0 and
NN parameters ψ0, the approximate gradient of the MI lower bound∇ξISMILE(ξ,ψ) at ξ0 can be
estimated by the Guided ES method. With the gradient in hand, we can maximize the MI lower
bound with respect to both the NN parameters ψ and the design parameters ξ jointly by gradient
ascent optimizer, which is given by Algorithm 1. The proposed method is named by SAGABED, which
is a critical contribution to scale the Bayesian experimental design to high dimensional setting such
that we can overcome the grand challenge in gradient-free methods, e.g., Bayesian optimization.

In the following, we discuss some important features of the SAGABED method, specifically for
high-dimensional design problems: (1) Unified framework vs. two-stage framework: Without the
requirement of pathwise gradients for implicit models, we utilize the stochastic approximate gradients
and construct a unified framework that allows the design process to be performed by a simultaneous
optimization with respect to both the variational and design parameters. The existing two-stage
framework that builds a pointwise MI estimator before feeding this estimator to an outer-level
optimizer is often computationally intensive; (2) Scalability, portability, and parallelization: we
propose a stochastic approximate gradient ascent procedure that naturally avoids the scalability
issue in gradient-free methods. The proposed framework can be easily incorporated with other MI
estimators and implicit models because we only need the function value to approximate the gradient
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based on the guided ES algorithm; (3) Robust estimation with a low variance: The smoothed MI
lower bound used here allows us to perform a robust MI estimation and optimization of experimental
design. The resulting low variance of the optimal design and posterior samples enable a more accurate
estimate of the model parameters.

Algorithm 1: The SAGABED algorithm
1: Require: neural network architectures, learning rates `ψ and `ξ, τ in ISMILE, total prior samples n, total

iterations T , implicit modelM
2: Process:
3: Initialize a design ξ0 by random sampling
4: Initialize neural network parameter ψ0

5: for t = 0 : T − 1 do
6: Draw n samples from the prior distribution of the model parameters θ: θ(1), ...,θ(n) ∼ p(θ)
7: Compute the data samples y(i), i = 1, ..., n using the current design ξt and a implicit modelM
8: Evaluate the smoothed MI lower bound ISMILE at the current design ξt and network parameters ψt
9: Compute the approximate gradient estimator∇ξISMILE(ξt,ψt) using the GES algorithm

10: Evaluate the gradient of the ISMILE with respect to the network parameters∇ψISMILE(ξ,ψ)
11: Update design ξt via gradient ascent:

ξt+1 = ξt + `ξ∇ξISMILE(ξt,ψt)
12: Update neural network parameters ψt via gradient ascent:

ψt+1 = ψt + `ψ∇ψISMILE(ξt,ψt)
13: end for

After determining the optimal design ξ∗ by maximizing the MI lower bound, we can obtain an
estimate of the posterior p(θ|y, ξ∗) given the learned neural network Tψ∗(θ,y) and prior distribution

p(θ|y, ξ) = clip(eTψ(θ,y)−1, e−τ , eτ )p(θ) (10)

The relationship in Eq. (10) allows to easily generate posterior samples θi ∼ p(θ|y, ξ∗) using MCMC
algorithm since the posterior density can be quickly evaluated via Eq. (10).

3 Experiments

Noise linear regression We first demonstrate our proposed method using a classical noisy linear
model [1], which is given by y = θ11 + θ2d+ ε+ ν, where y is a response variable, θ = [θ1, θ2]T

are model parameters, ε ∼ N (0, 1) and ν ∼ Γ(2, 2) are noise terms. Our target is to make D
measurements to estimate θ by constructing a design vector d = [d1, ..., dD]T which consists of
individual experimental designs. Four cases D=1, 10, 50 and 100 are investigated in this example.
We randomly initialize a design d ∈ [−10, 10] and sample 10,000 parameters from a prior distribution
p(θ) = N (0, 32) and we use one layer of 100 and 150 hidden neurons for D = 1 and D = 10
respectively. For high dimensional cases D = 50 and D = 100, we use 5-layered network with 50
hidden neurons for each layer. These NN architecture settings follow up the guidance in [1].
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Figure 1: MI lower bound as a function of NN training epochs for D=1, 10, 50 and 100.

Figure 1 shows a comparison between the proposed SAGABED method (combined SMILE with Guided
ES) and two baselines (MINE with SGA and BO). When D=1, three methods perform similarly but
our method outperforms the other two baselines on the high dimensional cases. The SGA method is
close to our method but shows a unstable training with large variance, and is probably trapped into a
local minimal when D=10. The performance of the MINE with BO method drops significantly as
the dimension increases. The proposed SAGABED method also demonstrates superior performance
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Table 1: Estimating mean and standard deviation of the posterior samples of the model parameters θ
using optimal designs d∗ and real data observation y∗ (use θtrue = [1,4] to generate y∗)

Method D=10 D=50 D=100

θ̂1 θ̂2 θ̂1 θ̂2 θ̂1 θ̂2
MINE + SGA 0.51±0.44 2.99±0.67 1.20±0.18 3.79±0.23 0.97±0.05 4.04±0.04
MINE + BO 1.22±0.58 4.93±0.91 0.71±0.25 3.66±0.40 1.35±0.11 4.79±0.26

SMILE + GES 0.83±0.56 4.69±0.58 1.11±0.13 4.25±0.19 1.02±0.04 3.98±0.03

in estimating the posterior distributions, which is clearly reflected by the smaller variance of the
posterior samples in Table 1.

Tuning for quantum control Typically, the reliable capability to manipulate qbit states is critical
to quantum technologies. For instance, radio-frequency pulses can be used to change of state of
spin-up and spin-down, and patients benefit from MRI scans that use these approaches. In this
example, we use the BED to simulate a tuning process such that we can control the desired duration
and frequency of pulses to flip electron spins in a reliable scheme. For the implicit model without
access to gradients, we thus compare our proposed SAGABED method with the Bayesian optimization
method. As shown in Figure 2, our method outperforms the Bayesian optimization in terms of better
measurement designs in Figure 2(a) and a much smaller variance in the posterior distributions of the
high-dimensional cases such as N = 50, 100 and 500 in Figure 2 (b).

Figure 2: Performance comparison between SAGABED (a-b) and BO (c-d) method on BED for tuning
quantum pulse example. The contour images ((a) and (c)) show the model photon counts for optically
detected spin manipulation for pulse durations (x-axis) and amounts of detuning from the spin’s
natural resonance frequency. (b) and (d) display the evolution of the posterior distributions with the
number of designed measurements. The red points in (b) and (d) are the true mean photon count.

Related works. Foster et al. [4] recently proposed to use the MI lower bound for Bayesian optimal
experimental design. This study relies on variational approximations to the likelihood and posterior
but it is a two-stage approach where the optimal designs were determined by a separate BO. As a result,
this approach has a limitation in scaling to high-dimensional design problems. A follow-up study
developed by [5] aims to address the scalability issue by introducing a unified stochastic gradient-
based approach. However, they assumed the models with the tractable likelihood or the gradient
approximations are available. In the scope of BED for implicit models, Ao and Li [19] proposed
an approximate KLD based BED method for models with intractable likelihoods; Kleinegesse and
Gutmann [6, 20] have recently considered the use of the MI combined with likelihood-free inference
by ratio estimation to approximate posterior distributions but this method is often computationally
intensive. The authors rectify this in a follow-up study [1] that leverages MINE to jointly determine
the optimal design and the posterior. However, these methods relied on a outer-level optimizer such
as BO are difficult to address the scalability issues.

4 Conclusion

In this paper, we develop a hybrid gradient method that leverages recent developments in variational
MI estimator and evolution strategies. The proposed SAGABED method incorporating a smoothed
MI estimator with a guided ES achieves a unified scalable procedure to simultaneously determine
the optimal design and NN parameters for implicit models without a sampling path gradient. The
performance is demonstrated by one classical noisy linear model and one scientific quantum control
example. The results show that our proposed method outperforms the other two baselines in terms of
the MI lower bound estimate and the variance of the posterior samples given the optimal design.
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6 Broader impact

Since this work belongs to development of fundamental machine learning algorithms, it does not
present any immediately foreseeable societal consequence. However, further development of the
proposed method may lead to some potential positive or negative impacts on the society. Some
positive impacts include (1) enable scientists and engineers to use their implicit simulator code to
solve high dimensional Bayesian experiment design for scientific discovery; (2) help experimental
scientist design more efficient experiments to reduce experiment cost. Furthermore, we should be
cautious of the consequence of failure of the method which could cause incorrect scientific predictions
that may delay the progress of scientific discovery.
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