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ABSTRACT BOUNDING ELLIPSES PRELIMINARY RESULTS

3D instance segmentation remains a challenging problem in Ellipse Parameterization

computer vision. Particle tracking at colliders like the LHC can be * 5 degrees of freedom: B = (1, d¢, a, b, 6)
framed as an instance segmentation task: beginning from a point
cloud of hits in a particle detector, an algorithm must identify
which hits belong to individual particle trajectories and extract
track properties. Graph Neural Networks (GNNs) have shown
promising performance on standard instance segmentation tasks.
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segmentation network designed to localize and classify
objects in a graph

® Granular detector in magnetic field records
particle interactions with material (hits)

* Key components: graph re-embedding,

localization/classification, bounding box merging FUTU RE STU D | ES

® Charged particles follow helical path defined
in transverse plane by 2 parameters: p, €7

® Tracking algorithms must reconstruct and fit
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