
[METHODS]
Our workflow (Fig. 1) is composed of four steps:

1.The model fields x are decomposed via Principal Components Analysis (PCA). 
PCA is an unsupervised learning method that simplifies high-dimensional data 
by transforming it into fewer dimensions. By truncating these Principal 
Components (PC) we obtain a reduced order model (ROM).

2.The truncated PCs (P) are then used to train a Long Short-term Memory (LSTM) 
network. This is useful for forecasts, and at lower computational cost given that 
the LSTM is trained on a ROM. The LSTM network takes N previous time-steps 
to predict the next one.

3.We proposed training the LSTM using adversarial training (adv). This type of 
training can add robustness by detecting and rejecting adversarial examples 
with the addition of a discriminator. To reduce the design space, a mirrored 
LSTM was used in the discriminator. The losses of the LSTM with adversarial 
training are:

where bce is Binary Cross-entropy and mse is mean squared error.

4.Once the forecasts are obtained in the ROM space, they are projected back to 
the PC space, and then to the Physical Space.

The forecasts are created by using previous time-steps from data and 
producing a forecast.  This forecast is subsequently used as an input for the 
prediction of the next time-step. After a set observation period (iterations), it is 
very clear that the LSTM with adversarial training outperforms the LSTM trained 
in a “classic” way. The forecasts are 4 orders of magnitude faster than the CFD 
simulation.

[STUDY AREA]

The study area is a 3D realistic representation of a part of Southeast London. 
And the data comes from a CFD simulation including velocities, and tracer 
fields. The tracer field mimics a busy traffic junction. The dispersion of the 
pollution is described by the classic advection-diffusion. Our workflow is 
general enough to represent any other CFD model solution in different 
locations given that enough data is available.

[RESULTS]
Four experiments were set up to assess the improved forecast of the 
adversarially trained LSTM (LSTMadv). A PCA was applied to two output fields 
from the CFD simulation: Tracer (1-dimensional, unitless), and Velocity 
(3-dimensional, ms−1). To each of these set of PCs, a truncation of 64 and 128 
PCs was applied which explains over 90% of variance in each case. The 
truncation to 64 PCs and 128 PCs reduces the size of the dataset by 4 and 3 
orders of magnitude, respectively. Only 90% of the data is used for training, and 
10% is used for validation. 
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Fig 4. Comparison of forecasted velocity in ms-1 (magnitude) fields by LSTM without 
adversarial training and LSTM with adversarial training with 64 PCs. This is a 25 

time-step forecast starting from t=350.

[INTRODUCTION]
● Given the amount of data in Computational Fluid Dynamics (CFD) 

simulations, data-driven approaches are attractive solutions to produce 
reduced order models (ROMs) [1]. 

● Forecasts using ROMS can be obtained at a fraction of the cost of the 
original CFD model solution.

● Recurrent neural networks (RNN) have been used to model and predict 
temporal dependencies between inputs and outputs of ROMs [2]. 

● A way to obtain reliable forecasts comes from adversarial losses via 
adversarial training. This can add robustness by detecting and rejecting 
adversarial examples.

Fig 1. Proposed workflow for adversarial training of LSTM.

[CONCLUSIONS]

● We presented an adversarially trained LSTM that improves the forecast of 
a LSTM trained in a “classical” way. 

● This is important when accurate near real-time predictions are needed 
and not enough data is available. It can be observed that adversarially 
trained LSTM does not diverge greatly from the underlying physical model 
given the constraint of the discriminator network.   

● The replacement of the CFD solution by these models will speed up the 
forecast process towards a real-time solution. The robustness of the 
adversarial training could produce more physically realistic flows. 

● Future work will apply the same methodology to different dimension 
reduction schemes. Furthermore, this framework is data-agnostic and 
could be applied to different CFD models of larger complexity where 
enough data is available.
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Fig 3. Comparison of LSTMclassic (blue) and LSTMadv (red). The shaded areas show an 
ensemble of errors of 50 time-step long forecast from different starting points within 
training data) with 128 PCs. The solid line is the mean and the shaded area is one 
standard deviation from the mean.
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Fig 2: CFD simulation, with different tracers, of South Kensington, London, UK. This is 
a potential, more complex, domain that could be used to scale our workflow.


