Machine learning based long-lived particle reconstruction
\ algorithm for the LHCb experiment

Adam Dendek!, Tomasz Szumlak?
LAGH University of Science and Technology

LHCb detector Downstream tracking sequence

The LHCb detector is a single-arm forward
spectrometerat the LHC with a pseudorapidity in the
range 2<n<5.
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Machine learning in the LHCb downstream tracking algorithm

Downstream tracking contains two Machine Learning classifiers.
** The first is designed to reject as much fake T tracks as possible:
> |Implemented as bonsai Boosted Decision Trees (bBDT),
> Discretized 11D feature space,
> |nputs: T tracks topological variables, p, pt, ...
> QOperating point: bBDT removes 30% of fake T tracks,
> Fast evaluation time O(1).

LHCb track types % The second for the final selection of downstream tracks:

The tracks reconstructed in the LHCb detector are > further reducing fake tracks implemented as Neural Network

divided into types depending on the sub detectors in > Inputs: p, p,, track position, number of layers in TT, ...

which they are reconstructed. 9 . . P -

Long Traczs. % Improved fake tracks reduction and signal efficiency gain: O(3-5)%
** Hits at least in VELO and T stations

< Excellent momentum resolution LHCb simulation preliminary 1

¢ Used in majority of analyses L84 §
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Interpretability of the machine learning classifier

One of the crucial problems when building a complicated machine learning model is a lack of interpretability of its prediction. This fact raises the
guestion of why the researcher should trust the model. To make sure that the model provides reliable predictions two methods, were proposed:
SHAP (Shapley Additive exPlanations) and LIME ( Local Interpretable Model-Agnostic Explanations).
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Conclusions

The new algorithm to reconstruct tracks of daughters of long-lived particles in LHCb considerably improves on the performance in Run Il data taking conditions over the previous algorithm in terms of track
reconstruction efficiency, fake track rate, and also CPU time consumption is reduced by about one third. Within this study, two interpretability methods of the machine learning model were proposed, which
allowed increasing the trust in the classifier predictions.
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