Scalable, End-to-End, Deep-Learning-Based Data Reconstruction Chain for Particle Imaging Detectors

François Drielsma^{1†}, Kazuhiro Terao¹, Laura Dominé², Dae Heun Koh² on behalf of the DeepLearnPhysics Collaboration

 1 SLAC National Accelerator Laboratory, 2 Stanford Univeristy, † drielsma@slac.stanford.edu

1. Introduction

Input

Reconstruction challenges in LArTPC ν experiments:

- High resolution images → huge phase space
- Background-rich environement (SBN program)
- Massive $\mathcal{O}(10)$ tons volume (DUNE-FD)
- Interaction pileups (DUNE-ND)

Simulation of particle interactions in liquid argon:

- 768^3 voxels images ($\sim 12 \,\mathrm{m}^3$ of LAr, $3 \times 3 \times 3 \,\mathrm{mm}^3$ voxels)
- One `particle bomb' per image (tracks + showers from common vertex)
- Cosmic muons + random showers overlayed

Open dataset: PILArNet, arXiv:2006.01993

UResNet

2. Semantic Segmentation and Point Proposal

Sparse-UResNet+PPN, PRD.102.012005, arXiv:2006.14745

Semantic segmentation

Input: particle energy deposition images

Goal: voxel-wise particle type classification

 Shower-like, track-like, Michel electron, delta ray or low energy (LE)

Srategy: Sparse-UResNet autoencoder

- Based on the UNet architecture (features at different scales and skip connections)
- Convolutions done using ResNet blocks
- Sparse convolutions (SCN package)
- Learn five scores per pixel (one per class)

Sparse convolutions makes this technique scalable to large volumes: computation time grows as the number of active voxels

Inference: argmax on pixel scores

Semantics

Clusters

- Top right plot: confusion matrix
- Michel/track or delta/track confusion due to systematic overlaps
- Delta/LE confusion due to mislabelling

Point Proposal Network (PPN)

Goal: locate interesting points

- Identify start/end points of tracks, start points of showers, Michel and delta rays
- Reconstruct exact point locations

Strategy: share the semantic segmentation Sparse-UResNet for feature extraction

- Three voxel proposal layers at three scales
- Voxel mask propagated from lowest to highest resolution layer
- 3x3 convolution at last layer to identify offset and class of masked voxels

Inference: use pooling to select points

- Bottom right plot: distance from label point to closest proposed point and vice versa (excludes delta ray points)
- 68 % of label points < 0.35 voxel of proposed points, 95 % < 1.43 voxel

Particles

 Traditional methods report 68 % of vertex < 0.73 cm, i.e. 2.43 voxel here

3. Dense Clustering

SPICE, arXiv:2007.03083

Input to this reconstruction step:

- Particle energy deposition images
- Semantic segmentation predictions from previous stage

Goal: cluster densely-connected voxels into particle instances

Strategy: use Sparse-UResNet as a feature extractor and learn

- Embedding: map points belonging to same instance close
- Seediness: give points close to centroid a high score
- Margin: give larger embedded instances larger margins

Inference: iterative Gaussian kernel clustering

- Use highest seediness voxel as centroid
- Cluster points within some distance normalized by margin, repeat

Points Primaries PPN

GrapPA

4. Particle Aggregation

GrapPA, arXiv:2007.01335

Input: image segmented into dense particle instances

Goal: aggregate particles into superstructures

- Shower fragments into shower instances (+ identify primary)
- Particle instances into interactions (+ identify species)

Strategy: use a Graph Neural Network

- Connect particles with every other particle (complete graph)
- Provide node and edges with summary statistic features
- Use message passing to extract useful node and edge features

Inference: features are reduced to scores

- Node scores used to identify primary (99.5 %) or species
- Edge scores used to constrain adjacency matrix (clustering)

