
“Hey, that’s not an ODE”:
Faster ODE Adjoints with 12 Lines of Code

Patrick Kidger
University of Oxford;

The Alan Turing Institute
kidger@maths.ox.ac.uk

Ricky T. Q. Chen
University of Toronto;

Vector Institute
rtqichen@cs.toronto.edu

Terry Lyons
University of Oxford;

The Alan Turing Institute
tlyons@maths.ox.ac.uk

Abstract

Neural differential equations may be trained by backpropagating gradients via
the adjoint method, which is another differential equation typically solved using
an adaptive-step-size numerical differential equation solver. A proposed step is
accepted if its error, relative to some norm, is sufficiently small; else it is rejected,
the step is shrunk, and the process is repeated. Here, we demonstrate that the
particular structure of the adjoint equations makes the usual choices of norm (such
as L2) unnecessarily stringent. By replacing it with a more appropriate (semi)norm,
fewer steps are unnecessarily rejected and the backpropagation is made faster. This
requires only minor code modifications. Experiments on a wide range of tasks—
including time series, generative modeling, and physical control—demonstrate a
median improvement of 40% fewer function evaluations.

1 Introduction

The general approach of neural ordinary differential equations (E, 2017; Chen et al., 2018) is to use
ODEs as a learnable component of a differentiable framework. Typically the goal is to approximate a
map x 7→ y by learning functions `1(· , φ), `2(· , ψ) and f(· , · , θ), which are composed such that

z(τ) = `1(x, φ), z(t) = z(τ) +

∫ t

τ

f(s, z(s), θ) ds and y ≈ `2(z(T), ψ). (1)

The variables φ, θ, ψ denote learnable parameters and the ODE is solved over the interval [τ, T].
We include the (often linear) maps `1(· , φ), `2(· , ψ) for generality, as in many contexts they are
important for the expressiveness of the model (Dupont et al., 2019; Zhang et al., 2020), though our
contributions will be focused around the ODE component and will not depend on these maps.

1.1 Adjoint equations

The integral in equation (1) may be backpropagated through either by backpropagating through the
internal operations of a numerical solver, or by solving the backwards-in-time adjoint equations with
respect to some (scalar) loss L.

az(T) =
dL

dz(T)
, az(t) = az(T)−

∫ t

T

az(s) ·
∂f

∂z
(s, z(s), θ) ds and

dL

dz(τ)
= az(τ),

aθ(T) = 0, aθ(t) = aθ(T)−
∫ t

T

az(s) ·
∂f

∂θ
(s, z(s), θ) ds and

dL

dθ
= aθ(τ),

(2)

As the integrands require z(s), the adjoint equations are typically augmented with equation (1) run
backwards in time. Then the joint system a(t) = [az(t), aθ(t), z(t)] is solved backwards-in-time.

Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada.

2 Method

2.1 Numerical solvers

The forward and backward passes of equations (1) and (2) are both solved with a numerical differential
equation solver. Our interest here is in adaptive-step-size solvers. Indeed the default choice for
solving many equations is the adaptive-step-size Runge–Kutta 5(4) scheme of Dormand and Prince
(1980), for example as implemented by dopri5 in the torchdiffeq package or ode45 in MATLAB.

The part of interest to us is the accept/reject scheme. Suppose for some fixed t the solver has computed
some estimate ẑ(t) ≈ z(t), and it now seeks to take a step ∆ > 0 to compute ẑ(t+ ∆) ≈ z(t+ ∆).
A step is made, and some candidate ẑcandidate(t+ ∆) is generated. The solver additionally produces
zerr ∈ Rd representing an estimate of the numerical error made in each channel during that step.

Given some prespecified absolute tolerance ATOL (for example 10−9), relative tolerance RTOL

(for example 10−6), and (semi)norm ‖ · ‖ : Rd → [0,∞) (for example ‖z‖ =
√

1
d

∑d
i=1 z

2
i the RMS

norm), then an estimate of the size of the equation is given by

SCALE = ATOL+RTOL ·max(ẑ(t), ẑcandidate(t+ ∆)) ∈ Rd, (3)
where the maximum is taken channel-wise, and the error ratio

r =
∥∥∥ zerr

SCALE

∥∥∥ ∈ R (4)

is then computed. If r ≤ 1 then the error is deemed acceptable, the step is accepted and we take
ẑ(t+∆) = ẑcandidate(t+∆). If r > 1 then the error is deemed too large, the candidate ẑcandidate(t+∆)
is rejected, and the procedure is repeated with a smaller ∆.

2.2 Adjoint seminorms

Not an ODE The key observation is that aθ does not appear anywhere in the vector fields of
equation (2). This means that (conditioned on knowing z and az), the integral corresponding to aθ is
just an integral—not an ODE. As such, it is arguably inappropriate to solve it with an ODE solver,
which makes the implicit assumption that small errors now may propagate to create large errors later.

Accept/reject This is made manifest in the accept/reject step of equation (4). Typical choices of
norm ‖ · ‖, such as L2, will usually weight each channel equally. But we have just established that to
solve the adjoint equations accurately, it is far more important that z and az be accurate than it is that
aθ be accurate.

Seminorms Thus, when solving the adjoint equations equation (2), we propose to use a ‖ · ‖ that
scales down the effect in those channels corresponding to aθ. In practice, in our experiments, we
scale ‖ · ‖ all the way down by applying zero weight to the offending channels, so that ‖ · ‖ is in fact
a seminorm. This means that the integration steps are chosen solely for the computation of az and z,
and the values of aθ are computed just by integrating with respect to those steps.

Code This is a simple change requiring few lines of code. The additional 12 lines are marked.
1 import t o r c h d i f f e q
2
3 def rms_norm (t e n s o r) : #
4 re turn t e n s o r . pow (2) . mean () . s q r t () #
5 #
6 def make_norm (s t a t e) : #
7 s t a t e _ s i z e = s t a t e . numel () #
8 def norm (a u g _ s t a t e) : #
9 y = a u g _ s t a t e [1 : 1 + s t a t e _ s i z e] #

10 a d j _ y = a u g _ s t a t e [1 + s t a t e _ s i z e : 1 + 2 ∗ s t a t e _ s i z e] #
11 re turn max (rms_norm (y) , rms_norm (a d j _ y)) #
12 re turn norm #
13 #
14 t o r c h d i f f e q . o d e i n t _ a d j o i n t (func = . . . , y0 = . . . , t = . . . ,
15 a d j o i n t _ o p t i o n s = d i c t (norm=make_norm (y0))) #

2

Table 1: Results for Neural CDEs. Mean ± standard deviation over five repeats.

Default norm Seminorm

RTOL, ATOL Accuracy (%) Bwd. NFE (106) Accuracy (%) Bwd. NFE (106)

10−3, 10−6 92.6±0.4 14.36±1.09 92.5±0.5 8.67±1.60

10−4, 10−7 92.8±0.4 30.67±2.48 92.5±0.5 12.75±2.00

10−5, 10−8 92.4±0.7 77.95±4.47 92.9±0.4 29.39±0.80

Does this reduce the accuracy of parameter gradients? One obvious concern is that we are
typically ultimately interested in the parameter gradients aθ, in order to train a model; with respect to
this our approach seems counter-intuitive.

However, we verify empirically that models still train without a reduction in performance. We explain
this by noting that the z, az channels truly are ODEs, so that small errors now do propagate to create
larger errors later. Thus these are likely the dominant source of error overall.

3 Experiments

We compare our proposed technique against conventionally-trained neural differential equations,
across a range of tasks drawn from the main applications of neural differential equations. In every
case, the differential equation solver used is the Dormand–Prince 5(4) solver “dopri5”. The default
norm is a mixed L∞/L2 norm used in torchdiffeq. The code for these experiments can be found
at https://github.com/patrick-kidger/FasterNeuralDiffEq/.

Neural Controlled Differential Equations Consider the Neural Controlled Differential Equation
(Neural CDE) model of Kidger et al. (2020). To recap, given some (potentially irregularly sampled)
time series x = ((t0, x0), . . . , (tn, xn)), with each ti ∈ R the timestamp of the observation xi ∈ Rv ,
let X : [t0, tn] → R1+v be an interpolation such that X(ti) = (ti, xi). For example X could be a
natural cubic spline. Then take f(t, z, θ) = g(z, θ)dX

dt (t) in a Neural ODE model, so that changes in
x provoke changes in the vector field, and the model incorporates the incoming information x. This
may be thought of as a continuous-time RNN.

We apply a Neural CDE to the Speech Commands dataset (Warden, 2020). This is a dataset of
one-second audio recordings of spoken words such as ‘left’, ‘right’ and so on. We take 34975 time
series corresponding to 10 words, to produce a balanced classification problem. The initial map `1 (of
equation (1)) is taken to be linear on (t0, x0). The terminal map `2 is taken to be linear on z(tn). We
investigate how the effect changes for varying tolerances by varying the pair (RTOL,ATOL) over
(10−3, 10−6), (10−4, 10−7), and (10−5, 10−8). For each such pair we run five repeated experiments.

See Table 1 for results on number of function evaluations. The accuracy of the model is unaffected by
our proposed change, whilst the backward pass uses 40%–62% fewer steps, depending on tolerance.
Figure 1 shows how accuracy and function evaluations change during training. We see that accuracy
quickly gets close to its maximum value during training, with only incremental improvements for
most of the training procedure. Additionally, we see that the number of function evaluations is much
lower for the seminorm throughout training.

Continuous Normalising Flows Continuous Normalising Flows (CNF) (Chen et al., 2018) are a
class of generative models that define a probability distribution as the transformation of a simpler
distribution by following the vector field parameterized by a Neural ODE. Let p(z0) be an arbitrary
base distribution that we can efficiently sample from, and compute its density. Then let z(t) be the
solution of the initial value problem

z(0) ∼ p(z0),
dz(t)

zt
= f(t, z(t), θ),

d log p(z(t))

dt
= −tr

(
∂f

∂z
(t, z(t), θ)

)
,

for which the change in log probability density is also tracked, as the sample is transformed through
the vector field (Chen et al., 2018).

3

https://github.com/patrick-kidger/FasterNeuralDiffEq/

Figure 1: Mean ± standard deviation of the number of function evaluations (NFE) for the backward
pass of Neural CDEs, over the course of training.

Table 2: Results for Continuous Normalising Flows. Mean ± standard deviation over three repeats.

Default norm Seminorm

Test bits/dim Bwd. NFE (106) Test bits/dim Bwd. NFE (106)

CIFAR-10 (dh = 64) 3.3492±0.0059 41.65±1.97 3.3388±0.0082 38.93±1.32

MNIST (dh = 32) 0.9968±0.0020 41.50±2.35 0.9942±0.0013 37.03±0.96

MNIST (dh = 64) 0.9637±0.0008 44.24±1.78 0.9601±0.0025 37.85±0.94

MNIST (dh = 128) 0.9504±0.0036 48.60±2.30 0.9501±0.0031 41.84±1.92

In Table 2 we show the final test performance and the total number of function evaluations (NFEs)
used in the adjoint method over 100 epochs. We see substantially fewer NFEs in experiments on both
MNIST and CIFAR-10. Next, we investigate changing model size, by varying the complexity of
the vector field f , which is a CNN with dh hidden channels. We find that using the seminorm, the
backward NFE does not increase as much as when using the default norm.

Hamiltonian dynamics in reinforcement learning and control Finally we consider the problem
of learning Hamiltonian dynamics, using the Symplectic ODE-Net model of Zhong et al. (2020).
This involves training a neural network-parameterized Hamiltonian system within a model-based
control setting. We consider the fully-actuated double pendulum (“acrobot”) problem. Training data
involves small oscillations under constant forcing.

We find that the model successfully learns the dynamics. Across five repeats, the baseline (default
norm) model achieves a test L2 loss of (1.247 ± 0.520) × 10−4 whilst the proposed (seminorm)
model achieves a a test L2 loss of (2.995± 2.190)× 10−4.

However, the default norm required (4.645±0.001)×105 function evaluations to train (for the adjoint
equation, accumulated over all epochs), whilst the seminorm required only (2.655± 0.001)× 105

function evaluations. Our proposed change thus uses 43% fewer function evaluations on the backward
pass.

Finally, we verify that the end goal of controlling the system is achievable. The double pendulum is
controlled from the full-down to the full-upright position, using the seminorm-trained model. See
Figure 2.

Figure 2: Frames from controlling the fully-actuated double pendulum to the full-upright position.

4

4 Conclusion

We introduce a method for speeding up training neural differential equations. The method is simple
to implement and offers substantial speed-ups with no observed downsides.

Broader Impact

The use of differential equations a modelling paradigm within science is centuries old. As such we
expect the primary consequence of this work to be a positive, with applications to modelling in the
sciences. No specific negative ethical consequences are anticipated.

Acknowledgments

PK was supported by the EPSRC grant EP/L015811/1. PK and TL were supported by the Alan
Turing Institute under the EPSRC grant EP/N510129/1.

References
Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural Ordinary

Differential Equations. In Advances in Neural Information Processing Systems 31, pages 6571–
6583. Curran Associates, Inc., 2018.

J. R. Dormand and P. J. Prince. A family of embedded Runge–Kutta formulae. J. Comp. Appl. Math,
6:19–26, 1980.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In Advances in Neural
Information Processing Systems 32, pages 3140–3150. Curran Associates, Inc., 2019.

Weinan E. A Proposal on Machine Learning via Dynamical Systems. Commun. Math. Stat., 5(1):
1–11, 2017.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural Controlled Differential
Equations for Irregular Time Series. arXiv:2005.08926, 2020.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition.
arXiv:1804.03209, 2020.

Han Zhang, Xi Gao, Jacob Unterman, and Tom Arodz. Approximation capabilities of neural odes
and invertible residual networks. International Conference on Machine Learning, 2020.

Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Symplectic ode-net: Learning
hamiltonian dynamics with control. In International Conference on Learning Representations,
2020.

5

	Introduction
	Adjoint equations

	Method
	Numerical solvers
	Adjoint seminorms

	Experiments
	Conclusion

