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Motivation
• In the field of machine learning (ML) for materials
optimization, active learning algorithms, such as
Bayesian Optimization (BO), have been extensively
used to guide high-throughput autonomous
experimentation systems.
• Previous studies [1] benchmarked BO’s performance
within specific electrocatalyst composition space, but
whether their observation of ML models and
acquisition functions are applicable to broader array of
materials research remains unanswered.
• Benchmarking many off the shelf BO algorithms’
performance across five diverse experimental
materials science domains allow us to observe
different their performance across a broader range of
materials systems.
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Surrogate models 

(1) Random Forest (RF)
𝑛&'((= 50, bootstrap = True. 
(2) Gaussian Process (GP)
kernel = Matérn52 / Matérn32 / Matérn12 / RBF / MLP 
(3) GP with ARD
Automatic relevance detection (ARD): assigns 
independent lengthscales 𝑙) for each input dim 𝑖

Acquisition functions
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(1) Lower confidence bound (LCB) 
Tunable exploration and exploitation 
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(3) Maximum probability of improvement (MPI)
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Dataset manifold complexity analysis. a) Histogram of normalized objective values.
Each dataset's objective values are independently centered to their mean and scaled
to unit variance. b) Design space after dimension reduction to 3D via principal
component analysis (PCA).
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Task oriented metric [1]
𝐴𝑙𝑙 𝑖 : fraction of top 
5% performing sample 
by cycle 𝑖

Enhancement factor
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(1) Under same acquisition function, RF’s performance as surrogate model is 
on par, if not slightly worse, compared to that of GP equipped with ARD. 
(2) Both RF and GP (ARD) outclass GP w/o ARD as surrogate model. 
(3) Acquisition functions: balanced > overly greedy or exploratory.
In the context of high-throughput experiments for materials optimization,
(4) RF has advantage in time complexity, robustness as ensemble learning 
method, and allows one to make fewer structural assumptions about unfamiliar 
domain manifolds at initial hyperparameter selection.
(5) GP with ARD provides individual characteristic lengthscales for each 
dimension, which provide "weights" for understanding the objective’s sensitivity 
to each input dimension.

(1) Under same acquisition function, RF’s performance as surrogate model is 
on par, if not slightly worse, compared to that of GP equipped with ARD. Both 
RF and GP with ARD outclass GP without ARD as surrogate model. 
(2) Besides GP, RF also warrants consideration as surrogate model for future 
materials optimization campaigns.
(3) It would be good practice for researchers in the field to emphasize their use 
of ARD in GP as surrogate model.
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[*] Datasets will be published by original authors in journal or on arxiv in the future.


