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Abstract

In the framework of three-active-neutrino mixing, the charge parity phase, the neu-
trino mass ordering, and the octant of θ23 remain unknown. The Deep Underground
Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscilla-
tion experiment, which aims to address these questions by measuring the oscillation
patterns of νµ/νe and ν̄µ/ν̄e over a range of energies spanning the first and second
oscillation maxima. DUNE far detector modules are based on liquid argon TPC
(LArTPC) technology. A LArTPC offers excellent spatial resolution, high neu-
trino detection efficiency, and superb background rejection, while reconstruction
in LArTPC is challenging. Deep learning methods, in particular, Convolutional
Neural Networks (CNNs), have demonstrated success in classification problems
such as particle identification in DUNE and other neutrino experiments. How-
ever, reconstruction of neutrino energy and final state particle momenta with deep
learning methods is yet to be developed for a full AI-based reconstruction chain.
To precisely reconstruct these kinematic characteristics of detected interactions at
DUNE, we have developed and will present two CNN-based methods, 2-D and
3-D, for the reconstruction of final state particle direction and energy, as well
as neutrino energy. Combining particle masses with the kinetic energy and the
direction reconstructed by our work, the four-momentum of final state particles
can be obtained. Our models show considerable improvements compared to the
traditional methods for both scenarios.

1 Introduction
Neutrino oscillation is the first experimental observation beyond the standard reconstruction method
which provides evidence of neutrinos with a non-zero mass. This phenomenon originates from the
mixture between the mass and flavor eigenstates of neutrinos, and is commonly described by the
PMNS formalism with six fundamental parameters [1–3]. DUNE aims to make precise measurements
of these oscillation parameters through the detection of νµ/ν̄µ disappearance and νe/ν̄e appearance
over a long propagation distance [4]. A precise neutrino energy reconstruction provides a chance
to estimate the neutrino oscillation parameters with a high significance. Neutrinos are normally
detected via charged-current (CC) interactions with the nuclei in the detector. In a CC interaction,
the final state includes a charged lepton with the same flavor of the incident neutrino, which in the
case of DUNE it is either an electron or a muon, and one or more hadrons. Directions and energies
(momentum) of these final state particles give the full kinematics of an neutrino interaction.

Traditionally, the energies of electrons and hadrons are calculated from calorimetric energies and
calibration factors. The kinetic energy of the muons is reconstructed using the length of the track
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or the multiple Coulomb scattering method [5], depending on whether the track is contained or not
inside the detector. The Coulomb scattering method uses the average scattering angle of a muon to
predict the energy not contained in the detector. Directions of particles are reconstructed by fitting to
detector hits. The neutrino energy is obtained as the sum of the lepton and hadron energies [6]. The
reconstruction of these kinematic parameters is challenging in DUNE due to missing energy caused
by argon impurities, nonlinear detector energy responses and overlapping particle trajectories. Image
recognition models like convolutional neural networks (CNNs) [7, 8] have demonstrated outstanding
performance in classification tasks using calorimeter images at DUNE and other high energy physics
experiments [9–18]. Nevertheless, applications of CNNs to solve regression problems and reconstruct
continuous variables in neutrino physics is still preliminary [19, 20], especially when the variables
are vectors. In this work, we propose using CNNs to reconstruct the aforementioned kinematic
parameters directly from DUNE’s 2-D and 3-D LArTPC images. Our work demonstrates that the
kinematics of a physics process in a complicated detector can be fully reconstructed by AI without
laborious human-engineered algorithms.

To detect the interactions, the DUNE LArTPC far detector has 3 wire planes for readout, positioned
at different angles from each other. After a number of corrections, the signals read out by these planes
are reconstructed as "hits", categorized by the charge per hit, the wire and wire plane in which the
hit occurred on, and the time of the hit, in units of ticks, which are 0.5 µs each. This information
can be represented as 3 images for each neutrino event, one for each wire plane. The pixelmaps are
arranged as a 400×280 pixel image, where each pixel corresponds to the reconstructed hits binned by
wire number and time ticks respectively, and centered using the reconstructed neutrino interaction
vertex. The 400×280 pixels represent 400 wires by 1680 time ticks for νe events, and 2800 wires
by 6720 time ticks for νµ events. It is also possible to create 3-D pixelmaps by combining spatial
and charge information from all 3 planes. These 3-D pixelmaps are 100×100×100 pixels while its
corresponding true area in the detector is 125×125×250 cm for νe events, and 500×500×1000 cm
for νµ events where the last dimension is the direction of the neutrino beam. These 3-D pixelmaps
are used by the CNN in the reconstruction of the 3-D directions, as they directly provide spatial
distributions of detector hits.
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(a) Full-event νe CC
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(b) Full-event νµ CC

Figure 1: 3 views of 2-D pixelmaps for full-event νe and νµ CC. 3 views of each event are taken
together as inputs of the 2-D energy regression CNN.
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(b) Prong-only νe CC
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(c) Full-event νµ CC
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(d) Prong-only νµ CC

Figure 2: 3-D pixelmaps for full-event and prong-only νe and νµ CC. Each pixelmap is taken as an
input of the 3-D regression CNN. The red arrows indicate the true directions.

2 Models

We propose two CNN architectures, one for energy reconstruction in 2-D, and another one for
direction reconstruction in 3-D. For reconstructing CC and prong energy we use the same architecture
as [21] with hyperparameters optimized for these specific tasks using SHERPA [22]. The inputs to
the network are the three plane views U,V, and Z (Figure 1). For the νµ CC energy the model was
trained on a balanced combination of contained and not contained events. Both νµ CC energy and
prong energy models were optimized using Adam [23] with learning rate 0.001, batch size 100 and a
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(b) Residual block
Figure 3: Neural network architectures for direction regression.

mean absolute percentage error loss for up to 100 epochs with early stopping. The 2-D models were
trained using Keras [24] with Tensorflow backend [25].

The direction regression is heavily dependent on the 3-D geometry in the data, thus we designed a
3-D CNN to exploit the structure in the data. The model is built on a series of “residual blocks” [26]
and a linear layer to output 3-D direction vectors (Figure 3a). Each “residual block” includes two
convolutional layers with {64, 128, 256, 512} number of filters respectively, which are both followed
by a batch normalization layer (Figure 3b). The input and the output within and between the “residual
blocks” are connected by the “shortcut connection”. All activation units except the output use
Rectified Linear Units (ReLU) [27]. The model is optimized using Adam with learning rate 0.01 with
learning rate decay for 200 epochs and mini-batch size 32 in Keras [24]. A cosine distance metric was
used during the training while a relaxed cosine distance was used for validation and testing. Using
regular cosine distance can avoid ambiguity during optimization. It distinguishes between exactly
opposite directions, though we can easily infer which hemisphere directions are located in from prior
knowledge. Thus we defined relaxed cosine distance loss for better performance as:

Ldir =
1

n

n∑
i=1

min

1 +
~diTrue · ~diReco∣∣∣~diTrue

∣∣∣ ∣∣∣~diReco

∣∣∣ , 1 −
~diTrue · ~diReco∣∣∣~diTrue

∣∣∣ ∣∣∣~diReco

∣∣∣
 (1)

3 Results

Figures 4a and 4b show the distribution of relaxed angular resolutions (3-D angle between recon-
structed and true directions) from the CNN and the traditional method for prong-only νe and νµ CC
events. The angular resolutions are used instead of cosine distances for visualization purposes. The
CNN model produced 13.3◦ and 4.8◦ angular resolution compared with 37.6◦ and 9.5◦ from the
traditional method, an improvement of 65% and 50% for electron and muon respectively. Figures
4c and 4d show the energy dependence of the RMS of the angular resolutions. The 3-D regression
CNN produced a more precise reconstruction for the whole neutrino energy range for both νe and νµ.
These results show the 3-D CNN can extract spatial information better than the traditional clustering
and fitting method.
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(a) Angular resolution for νe CC
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(c) Energy dependency for νe CC
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Figure 4: Direction reconstruction performance as angular resolution for νe and νµ CC. The 3-D
regression CNN produced more precise direction reconstruction than the traditional method.
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Figure 5 shows the CNN outperforms the leptonic+hadronic energy method by 47% and 15% for
νµ CC events contained and not contained in the detector respectively. The CNN improves the
RMS from 0.191 to 0.101 for contained events and from 0.200 to 0.158 for uncontained events.
The improvement for events outside the detector with CNN indicates that AI can automatically and
more effectively extract the relationship between the muon scattering angle and uncontained energy
without explicitly applying the multi-coulomb scattering equation. Potential energy-dependent biases
for contained events were corrected by training CNN with reweighted neutrino energy distribution.
The reweighted energy distribution is flat between 0 and 6 GeV and constant for higher energies.
However, correcting the bias resulted in a slightly higher resolution (0.116), but it still outperformed
the leptonic+hadronic energy method in terms of resolution and bias (Figure 5).

Figure 5e and 5f display the track energy reconstruction for the muon (contained events) and electron
respectively. The resulting histograms are fit with Gaussian curves to estimate the mean and standard
deviation. The CNN and the estimation from the track length perform similar to one another. With
both methods achieving a mean of -0.001 and similar resolution around the peak (4% for muon and
5% for electron), while the regression CNN has a much narrower overall distribution, indicating it
is less affected by the failure of reconstruction. For the electron, the CNN demonstrates less bias
in reconstruction with a mean of 0.007 compared to the Calorimetric Energy of -0.057, an 8 fold
improvement in the bias.
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(a) νµ CC energy (contained).

-1 0.5 0 0.5 1
(RecoEν - TrueEν) / TrueEν

0

500

1000

1500

2000

2500

3000

3500

E
ve

nt
s

νµ CC

DUNE Simulation

CNN Energy

Leptonic+Hadronic
Energy

(b) νµ CC energy (not contained).
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(c) νµ CC energy (contained).
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(d) νµ CC energy dependency (cont.)
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(e) Muon prong energy (contained).
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Figure 5: νµ CC and final state particle energy reconstruction using CNN. (c) and (d) trained
with reweighted energy spectrum to address energy dependent biases. The 2-D regression CNN
outperformed the traditional method.
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4 Conclusion

We have developed 2-D and 3-D regression CNNs to reconstruct both spatial and energy kinematic
parameters at DUNE. The regression CNNs outperform the traditional clustering and fitting based
methods, indicating that AI can better exploit underlying physics from simulated detector responses.
Our models achieve resolution improvements of 65% for electron directions and 50% for muon
directions, 31% for νµ CC energy, and much smaller RMS for lepton energy. The results are
promising for the next phase of DUNE, where high-performance reconstruction algorithms will play
an essential role in the analysis of new experimental data.

Broader Impact

The deep learning algorithms developed in this work could replace many traditional methods in
continuous variable reconstruction tasks for complex detectors. This work is a key step towards a
full AI-based event reconstruction. By deploying our methods, they will facilitate the analysis of
the large volume of experimental data by providing fast and precise kinetic energy and direction
reconstruction.

In the case that our current methods do not match the real data well, detector simulation, energy
calibration, and neutrino event generator can be tuned based on the observed difference between data
and simulation. Data-driven models and training could also be implemented in our algorithms to
mitigate this issue. While our models are currently trained on DUNE simulation, the next step is to
validate their performance on the data taken by DUNE’s prototype detectors at CERN.
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