

Problem Statement

- The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment.
- However, reconstruction of neutrino energy and final state particle momenta is challenging.
- We developed two CNN-based models to reconstruct the energy and direction of detected interactions at DUNE, showing considerable improvements compared to the traditional methods.

and prong-only (right) v_e CC

and prong-only (right) v_{μ} CC

The DUNE LArTPC far detector has 3 wire planes for readout, positioned at different angles from each other. For energy reconstruction, the three 2-D pixelmaps of each event are reconstructed by wire number and time ticks. The 400×280 pixels represent 400 wires by 1680 time ticks for v_e,

and 2800 wires by 6720 time ticks for v_{μ} .

For direction reconstruction, the 3-D pixelmaps are created by combining spatial and charge information from all 3 planes. These 3-D pixelmaps are 100×100×100 pixels which are $125 \times 125 \times 250$ cm for v_e and $500 \times 500 \times 1000$ cm for v_u.

Deep-Learning-Based Kinematic Reconstruction for DUNE

Junze Liu for the DUNE Collaboration University of California, Irvine junzel1@uci.edu

Direction Reconstruction

- the data.

$$U_{\text{dir}} = \frac{1}{n} \sum_{i=1}^{n} \min\left(1 + \frac{\vec{d}_{\text{True}}^{i}}{|\vec{d}_{\text{True}}^{i}|}\right)$$

directions.

Energy Reconstruction

- per image plane.
- optimization.

