
LundNet: Robust jet identification using graph
neural networks

Frédéric A. Dreyer
Rudolf Peierls Centre for Theoretical Physics, University of Oxford

Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
frederic.dreyer@physics.ox.ac.uk

Huilin Qu
CERN

huilin.qu@cern.ch

Abstract

The identification of heavy particles such as top quarks or vector bosons is one
of the key issues at the Large Hadron Collider. An efficient way to describe the
radiation patterns within a jet is the Lund plane. In this article, we introduce a
novel jet tagging method which relies on graph neural networks and the Lund
plane to optimally disentangle signatures of boosted objects from background QCD
jets. We apply this framework to several different benchmarks, showing improved
performance for top tagging compared to existing algorithms. Finally, we study
the sensitivity to non-perturbative effects and show how kinematic cuts in the Lund
plane can improve the robustness of the neural network.

1 Introduction

As the Large Hadron Collider continues to explore proton collisions at the energy frontier, an important
task to search for signals of new physics beyond the Standard Model (SM) is the identification of
heavy particles at the electroweak scale, which might emerge from decays of yet unknown heavy
particles.

An entity of particular interest at the LHC is the jet, which is essentially defined as a collimated bunch
of particles with a certain energy and direction, typically determined using a sequential recombination
algorithm [1]. One important problem is that electroweak scale particles such as vector bosons or
top quarks produced from yet heavier new states can become sufficiently boosted such that their
hadronic decays are reconstructed as single jets. It is therefore crucial to have efficient tools to
probe the radiation patterns within jets and determine their physical origin. This topic has been the
focus of much attention over the past decade, with a range of approaches being developed to extract
information from a jet’s substructure. In recent years, a new generation of tools based on machine
learning models have emerged, which can achieve very high performance on specific benchmarks [2].
One important limitation of such methods is the difficulty to estimate their uncertainties, as well
as their proneness to rely on unphysical features present in the training data to achieve their high
performance, as this data is generally derived from Monte Carlo (MC) simulations of proton collisions.

In this article, we introduce a novel method to identify jets using graph networks. To this end, we
represent jets through their so-called Lund plane, associating each Lund declustering with a node on
the graph. Compared with other state-of-the-art tools, our new method shows improved performance,
notably for processes with complicated topologies such as top decays. Finally, we will investigate
the robustness of our new tagger, and show how through kinematic cuts on the Lund variables
one can mitigate overfitting to the MC simulations, reducing the reliance of the neural network on
non-perturbative contributions.
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2 LundNet: Tagging jets in the Lund plane

The Lund plane contains a rich set of information about jet substructure and has shown powerful
potential for jet tagging [3]. The Lund plane provides a description of the clustering sequence of a
jet in terms of the transverse momentum and angle of each splitting. This allows for a useful visual
representation of the clustering history of a jet, as well as an efficient encoding of a jets radiation
patterns that can be measured experimentally [4]. However, so far, only the primary Lund plane has
been used for jet tagging, which inevitably leads to some loss of information due to the omission
of the secondary splittings. In these proceedings, we propose LundNet, a new approach capable of
using the full Lund plane as input, relying on graph neural networks to better exploit the complex
structure associated with this representation.

Two variants of LundNet models are presented in this paper: the LundNet aims at maximizing
the performance of jet tagging with no particular constraints on computational cost, while the
FastLundNet strives on computation efficiency and robustness. This leads to different choices of
input features and network architectures.

2.1 LundNet

The LundNet adopts the dynamic graph convolutional neural network architecture used in the
ParticleNet [5]. The inputs, however, are changed from jet constituent particles to the emissions in
the full Lund plane. The graph network starts by constructing a graph for a jet, with each emission
being one node of the graph. For LundNet, we use the 5-dimensional Lund coordinates,

(ln z, ln ∆, ψ, lnm, ln kt),

as the node feature, which are defined through the two pt ordered subjets i and j of a given
declustering: z = pt,j/(pt,i + pt,j) is the momentum fraction of the softer subjet j; ∆2 =
(yi − yj)

2 + (φi − φj)
2, where yi is the rapidity, a measure of relativistic velocity along the

beam axis, and φi is the azimuthal angle of particle i around the same axis; ψ = tan−1
( yj−yi
φj−φi

)
is

the azimuthal angle around the subjet i axis; m is the invariant mass of the two subjets; kt = pt,j∆ is
the transverse momentum of j relative to i. Then, each node is connected to its k nearest neighbor
nodes in the pseudorapidity–azimuth plane, forming edges of the graph.

The graph convolution is based on EdgeConv [6], which operates in two steps. First, a shared
multi-layer perceptron (MLP) is applied to each edge of the graph, using the features of the two
nodes connected by the edge as inputs, and produces an “edge feature”. Then, an aggregation step
is performed for each node, averaging edge features of all the connecting edges and assigning it
as the new node feature. Such EdgeConv operation can be stacked, and between two consecutive
EdgeConv’s, the graph structure can be dynamically updated by redefining the k nearest neighbor–
based edges in the latent space learned from the previous EdgeConv layer, thus building a dynamic
graph convolutional neural network. A global average pooling is applied to the outputs of the last
EdgeConv layer, followed by a dense layer with 256 units and a dropout layer with a drop probability
of 0.1, before the final classification output.

The LundNet shares the same network architecture as ParticleNet, consisting of three EdgeConv
layers with the number of nearest neighbors k = 16. Each EdgeConv layer is built with a three-layer
MLP. The number of channels of the MLPs are (64, 64, 64), (128, 128, 128) and (256, 256, 256) for
the three EdgeConv layers, respectively.

2.2 FastLundNet

The FastLundNet is derived from the LundNet with a couple of modifications to reduce the complex-
ity and improve the robustness. While both networks use a graph of the emissions to represent a jet,
the FastLundNet uses the Cambridge/Aachen declustering tree [7, 8] as the graph structure directly,
and the graph structure remains unchanged throughout the graph convolutions. This modification
significantly reduces the computational cost as it gets rid of the expensive k nearest neighbor search,
and also substantially reduces the number of edges of the graph (as each node is connected to no
more than three other nodes now). In addition, a simplified, 3-dimensional Lund coordinates,

(ln z, ln ∆, ln kt),
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Figure 1: Background rejection for W (left) and top (right) tagging with pt > 500 GeV.

is used as the input features for each emission.

The FastLundNet consists of six EdgeConv layers, each built with a two-layer MLP. The number of
channels of the MLPs are (64, 64), (64, 64), (128, 128), (128, 128), (256, 256), (256, 256) for the
six EdgeConv layers, respectively.

2.3 Implementation

The LundNet is implemented with the Deep Graph Library [9] using the PyTorch [10] backend. The
training is performed on a Nvidia GTX 1080 Ti graphics card with a minibatch size of 256. The
Adam optimizer [11] is used to minimize the cross entropy loss. The training is performed for 30
epochs, with an initial learning rate of 0.001, and subsequently lowered by a factor of 10 after the
10th and the 20th epochs. A snapshot of the model is saved at the end of each epoch, and the model
snapshot showing the best accuracy on the validation dataset is selected for the final evaluation.

3 Identifying jets

As benchmarks, we consider the potential of our models for identifying two hallmark signals at the
LHC, which are hadronically decaying boosted electroweak W bosons and top quarks. The data
sample consists of 500 000 signal and background jets simulated with Pythia 8.223 [12] using fast
detector simulation with Delphes v3.4.1 particle flow [13], and is taken from [14]. Jets are clustered
using the anti-kt algorithm [15] with a radius R = 1.0 using FastJet 3.3.2 [16], and are required
to pass a selection cut, with transverse momentum pt > 500 GeV and rapidity |y| < 2.5. In fig. 1
(left) we show for each model the background rejection 1/εQCD against the signal efficiency εW for
W bosons. We compare the FastLundNet and LundNet models with three recent benchmarks: the
ParticleNet model introduced in [5], the RecNN model from [17] and the Lund+LSTM model from
the original Lund plane paper [3], which uses an LSTM network on the primary Lund sequence. Both
the RecNN and the Lund+LSTM models, while superior to heuristic substructure algorithms, are
vastly outperformed by all of the graph based methods considered. The LundNet model provides
slightly higher performance, but is substantially slower to train than the FastLundNet model, and,
as we will see below, less robust to non-perturbative effects.

In fig. 1 (right), we show similar results for the identification of top quarks. In this case, the
Lund+LSTM model performs poorly, as one would expect, because it uses only the primary Lund
declustering sequence, which can contain information about the structure of only either the bottom
quark or the vector boson that it initially decays into. It is interesting to see that in this more complex
case, the LundNet model provides a substantial performance gain over existing state-of-the-art
methods such as ParticleNet.
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4 Robustness study

Beyond its raw performance, it is important for practical applications that a tagger be relatively robust
to model-dependent non-perturbative effects. To carry out studies of sensitivity to non-perturbative
effects, we compare performance between a data sample produced at parton level, and a sample after
hadronisation (with underlying event models turned on in the event generator). The same model,
trained on a hadron-level sample, is used for the comparison.

Figure 2 shows the robustness of the tagger in conjunction with its performance. This robustness
is measured through the resilience ζ [18], calculated using both the efficiency on the hadron-level
sample, ε, and that on the parton-level sample, ε′:

ζ =

(
∆ε2W
〈ε〉2W

+
∆ε2QCD

〈ε〉2QCD

)−1/2
, (1)

where ∆ε = ε−ε′ and 〈ε〉 = 1/2 (ε+ ε′). The efficiencies are obtained with a fixed cut corresponding
to a signal efficiency εW = 40% on the hadron-level sample. The curves are obtained by increasing a
transverse momentum cut on the kt variable of the Lund plane, progressively removing declustering
nodes that fall below the cut. We can observe that despite their good performance, ParticleNet and
RecNN models have very little resilience to non-perturbative effects. Somewhat surprisingly, the
LundNet also offers relatively poor robustness to non-perturbative effects. This is because of its
higher dimensional input state, which allows it to extrapolate some information on emissions in
the non-perturbative regime despite the presence of the transverse momentum cut. In contrast, the
FastLundNet model becomes very resilient to non-perturbative effects as the transverse momentum
cut is increased, outperforming the Lund+LSTM model by a factor two for the same resilience value.

5 Conclusions

In these proceedings, we have introduced a novel algorithm to detect signals at the LHC, showing
substantial improvements on key benchmarks. We have also provided a concrete study of its
resilience to model-dependent non-perturbative effects, establishing an algorithm that combines
both performance and robustness. These results offer a promising avenue to construct an effective
machine-learning based tagger that can be robust to model-dependent effects present in the training
data, a key feature for real-life applications of artificial intelligence at the LHC.
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Broader impact

The work presented in these proceedings is focused on applications to collider physics, which presents
no ethical or societal concerns, but could potentially find useful applications in related fields with
pattern recognition problems in hierarchical data.
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