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Boosted objects at the LHC

I At LHC energies, EW-scale particles (W/Z/t. . . ) are often produced with
pt� m, leading to collimated decays.

I Hadronic decay products are thus often reconstructed into single jets.

I Many techniques developed to identify hard structure of a jet based on
radiation patterns.

Lund diagrams

I Lund diagrams in the (ln zθ, ln θ) plane are a
very useful way of representing emissions.

I Different kinematic regimes are clearly
separated, used to illustrate branching phase
space in parton shower Monte Carlo
simulations and in perturbative QCD
resummations.

I Soft-collinear emissions are emitted uniformly
in the Lund plane
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Jets in the Lund plane

The Lund jet plane is obtained by reclustering a jet’s constituents with the
Cambridge/Aachen algorithm, which sequentially combines the pair of particles i
and j closest in rapidity y and azimuthal angle φ around the beam axis,
minimising ∆2 = (yi − yj)2 + (φi − φj)2.
I Cast this clustering as Lund tree where each node d is a tuple T (d) with

kinematic information on splitting

T (d) = {z,∆ab, ψ,m, kt}
I A subset of this tree of particular significance is the primary list of tuples
Lprimary containing the kinematic variables of each splitting along the primary
hard branch of the tree (shown in blue).

Jet tagging using the full jet information

I Log-likelihood and LSTM network applied on primary Lund sequence can
provide substantial improvement over best-performing substructure observables.

I Performance can be improved further by taking secondary Lund planes into
account, particularly relevant for top tagging.

I Dynamic Graph CNN based methods perform particularly well, treating the full
Lund diagram as a vertices on a graph.

LundNet models

We study two separate models, one which optimises performance and one
designed to reduce the complexity of the model and improve its robustness.

In both cases, the graph network starts by constructing a graph for a jet, with
each node corresponding to a Lund declustering.

LundNet:
The kinematic input for each node is (ln z, ln ∆, ψ, lnm, ln kt).

Three EdgeConv layers using k = 16 nearest neighbors in the
pseudorapidity-azimuth plane

FastLundNet:
The kinematic input for each node is (ln z, ln ∆, ln kt).

Six EdgeConv layers using the immediate neighbours on the jet clustering tree for
the graph convolutions.

Boosted W and top tagging

I Graph-based methods outperform our previous benchmark significantly.

I The LundNet model provides substantial improvement over ParticleNet for top
tagging.

I FastLundNet achieves almost the same performance with a lightweight and
robust model.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
W

1

10

100

1000

10000

1/
QC

D

Pythia 8.223 simulation
signal: pp WW, background: pp jj

anti-kt R = 1 jets, pt > 500 GeV

QCD rejection v. W tagging efficiency

RecNN (LCBC '17)
Lund+LSTM (DSS '18)
FastLundNet
LundNet
ParticleNet (QG '19)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Top

1

10

100

1000

10000

1/
QC

D

Pythia 8.223 simulation
signal: pp tt, background: pp jj

anti-kt R = 1 jets, pt > 500 GeV

QCD rejection v. Top tagging efficiency

RecNN (LCBC '17)
Lund+LSTM (DSS '18)
FastLundNet
LundNet
ParticleNet (QG '19)

Robustness to non-perturbative effects

I Performance compared to resilience to MPI and hadronisation corrections.

I Vary cut on kt, which reduces sensitivity to the non-perturbative region.
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I LundNet & ParticleNet reach high
performance, but are not
particularly resilient to NP effects.

I FastLundNet model achieves high

resilience while retaining most of

the performance.

Conclusions

I Jet substructure provides a unique practical playground for recent
developments in machine learning.

I We describe a new way to study and exploit radiation patterns in a jet
using the Lund plane.

I Introduced two models, LundNet and FastLundNet, which can achieve
state-of-the-art performance on jet tagging benchmarks.

I Combination of physical insight and machine learning allows for models that
combine performance and robustness.
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