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 Motivaton i Problem formulation Ray-based fingerprinting algorithm
e While classification of arbitrary structures in high dimensions may Given a set of bounded and unbounded convex f Algorithm 1 Ray-based fingerprinting algorithm
require complete quantitative information, for simple geometrical polytopes filling an N-dimensional space and ' Step 1. Find M -projection centered at x, given .
structurgs, I0\./v-.d|men5|onal qualitative | information about the belonging to C disjtinct cIass.es (C € N), and a point T 1: Input: z,, 7, a set P of M points on the (N — 1)-sphere
boundaries defining the structures can suffice. x, € RV, determine to which of the classes the 2: m < 1; Ry < empty list
polytope enclosing x_ belongs. 3: form=1to M do
e \We propose a deep neural network (DNN) classification framework \_ 4 Find m-th ray R, .= and append it to the list R .
that utilizes a minimal collection of one-dimensional representations, . 5- end for i
called rays, to construct the fingerprint of the structure(s) based on Experlments. 2D quantum dots 6: Return: List of M rays Rj,.
Qubstantlally reduced information. e Electrons in quantum dot can be used to Step 2. Fingerprint x, € RY using rays in Ry from Step 1.

1: Input: Ry, v:RT — [0, 1]

define gubits.t
2: m <+ 1; F, < empty list

Ray-based framework

e Electrons are confined via electrostatic 3: for m = 1to M do
e Consider Euclidean space RN with its conventional 2-norm distance potential created by gates. 4: Find the feature set Fwo,w}”-
function d and a polytope function p: RN — {0,1} . The set of points 3: if Fwo,w'}”. # O the.n. -
where p(x) =1 constitutes the boundary of a collection of e \/oltage on each gate needs to be set to 6: Identity the critical feature z)", find on,xf}n and append
polytopes. bring the device into a desirable regime of it to the list F,, .
operation.? 7 else
o . ™ 1.0 8: Append O to the list F,_.
Given x,, xr € RV, a set of points » /‘.CL’f /A sample 2D map generated with the\ = 9. end if
dSR::O'xf: = {(1f— t)x, + txs, t € [0,1]} 33'(') :L:c?ntum c:)ot s:jméljlatorzI shovg/ing (;chz 0.8 § 10: end for
\defines a ray from x, to x¢. . ifferent bounded and unbounde ° , . - :
Solvtopes in R’ with 12 evenly 06 = 11: Return: The point fingerprint vector F, .
distributed rays overlaid on 2D scans &
: : : like the ones used in Ref. [3]. 0.4 2
e Consider a collection of M rays of a fixed length r, NG / z Summa ry
Ry = {%xwxm,m = 1, ...,M} centered at x,,. 0.2 ED
| | 1Y 0.0 e We have defined a framework to generate a low-dimensional
[Given apoint x € R, .. and a \ £ 010 oo [piigls] 80~ 100 representation of geometrical shapes in a high-dimensional space.
polytope p, x is a feature if p(x) = 1. “;)
5 0.05 The average trends e We have empirically shown that the proposed framework is an
= 100 for fingerprints. effective solution for cutting down the measurement cost while
. (Eeatures along a given ray define its feature set. I 3 d' o 1 preserving high-accuracy c?f. classification on the qu.antum dot
/ , . ay ndex 100%- dataset. The ray-based classifier lead to results on par with the CNN
FxO’xf = {x € ERxO,xf | p(x) = 1} with a natural > . ] . . .
order given by the 2-norm distance function 2 based classifier (96.4 £ 0.4) % while reducing the data requirement by
Lo d: xoXFe, ., = RY.  Classifier performance for g 80%- 60 %. This promises significant improvements if implemented in a
N / varying numbers of rays as a 5 scheme to tune double quantum dots in experiments.
function of the total number of S 60%-
. . . . . pixels measured and averaged 3= . : : :
e Consider a decreasing weight function y: R* — [0,1], a weight set over 50 training runs. Z  Out preliminary analysis suggests that the reduction in data
- D 40%1 \ _requirements for 3D data is even more significant.

I‘xO,xf = {y (d(x, xf)) | x € Fxo,xf} corresponding to the feature set, — —

and a point x € Iy , . with highest (i.e., critical) weight Wy . Total number of pixels References
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