

Ray-based classification framework for high-dimensional data

JOINT CENTER FOR QUANTUM INFORMATION AND COMPUTER SCIENCE

Motivation

• While classification of arbitrary structures in high dimensions may require complete quantitative information, for simple geometrical structures, low-dimensional qualitative information about the boundaries defining the structures can suffice.

• We propose a deep neural network (DNN) classification framework that utilizes a minimal collection of one-dimensional representations, called rays, to construct the *fingerprint* of the structure(s) based on substantially reduced information.

Ray-based framework

• Consider Euclidean space \mathbb{R}^N with its conventional 2-norm distance function d and a polytope function $p: \mathbb{R}^N \to \{0,1\}$. The set of points where p(x) = 1 constitutes the boundary of a collection of polytopes.

Given $x_o, x_f \in \mathbb{R}^N$, a set of points $\Re_{x_o, x_f} := \left\{ (1-t)x_o + tx_f, t \in [0,1] \right\}$ defines a <u>ray</u> from x_o to x_f .

• Consider a collection of M rays of a fixed length r, $\mathcal{R}_M \coloneqq \{\Re_{x_o, x_m}, m = 1, \dots, M\}$ centered at x_o .

> Give \mathscr{X}_{a} point $x \in \mathfrak{R}_{x_o, x_f}$ and a polytope p, x is a <u>feature</u> if p(x) = 1.

 x_o

order given by the 2-norm distance function $d: x_o \times F_{x_o, x_f} \to \mathbb{R}^+.$

• Consider a decreasing weight function $\gamma: \mathbb{R}^+ \to [0,1]$, a <u>weight set</u> $\Gamma_{x_o,x_f} = \left\{ \gamma \left(d(x, x_f) \right) \mid x \in F_{x_o,x_f} \right\} \text{ corresponding to the feature set,}$ and a point $x \in \Gamma_{x_o, x_f}$ with highest (i.e., critical) weight W_{x_o, x_f} .

Let $x_o \in \mathbb{R}^N$ be a point from which a collection of rays \mathcal{R}_M emanate. The *point fingerprint* of x_o is the *M*-dimensional vector consisting of the rays' critical weights:

 $\mathcal{F}_{x_o} \coloneqq \left(W_{x_o, x_f^1}, \dots, W_{x_o, x_f^M} \right),$ Where $W_{x_o, x_f^k} = 0$ if $\Gamma_{x_o, x_f^k} = \emptyset$.

Justyna P. Zwolak¹, Sandesh S. Kalantre², Thomas McJunkin³, Brian J. Weber⁴, and Jacob M. Taylor^{1,2}

¹ National Institute of Standards and Technology, Gaithersburg, MD 20899, USA ² University of Maryland, College Park, MD 20742, USA ³ University of Wisconsin-Madison, Madison, WI 53706, USA ⁴ ShanghaiTech University, Shanghai 201210, China

Classifier performance for varying numbers of rays as a function of the total number of voxels measured and averaged over 10 training runs.

CNN

Ray-based fingerprinting algorithm

Algorithm 1 Ray-based fingerprinting algorithm **Step 1.** Find M-projection centered at x_o given r. 1: Input: x_o, r , a set \mathcal{P} of M points on the (N-1)-sphere 2: $m \leftarrow 1$; $\mathcal{R}_M \leftarrow$ empty list 3: for m = 1 to M do Find *m*-th ray \Re_{x_o, x_f^m} and append it to the list \mathcal{R}_M . 5: end for 6: **Return:** List of M rays \mathcal{R}_M . **Step 2.** Fingerprint $x_o \in \mathbb{R}^N$ using rays in \mathcal{R}_M from Step 1. 1: Input: $\mathcal{R}_M, \gamma : \mathbb{R}^+ \to [0, 1]$ 2: $m \leftarrow 1; \mathcal{F}_{x_0} \leftarrow \text{empty list}$ 3: for m = 1 to *M* do Find the feature set F_{x_o, x_f^m} . if $F_{x_o, x_f^m} \neq \emptyset$ then Identify the critical feature x_i^m , find W_{x_o, x_f^m} and append 6: it to the list $\mathcal{F}_{x_{\alpha}}$. 7: else Append 0 to the list \mathcal{F}_{x_0} . 0.10 rprint vector \mathcal{F}_{x_o} . 0.05 -10 12 8 --- _{SD_R} nework to generate a low-dimensional ____ DD I shapes in a high-dimensional space. --- SD_C

• We have empirically shown that the proposed framework is an effective solution for cutting down the measurement cost while preserving high-accuracy of classification on the quantum dot dataset. The ray-based classifier lead to results on par with the CNN based classifier (96.4 \pm 0.4) % while reducing the data requirement by 60 %. This promises significant improvements if implemented in a scheme to tune double quantum dots in experiments.

• Out preliminary analysis suggests that the reduction in data requirements for 3D data is even more significant.

References

[1] D. Loss and D.P. DiVincenzo. Quantum computation with quantum dots. *Phys. Rev. A*, **57**, 120 (1998). [2] D. M. Zajac, T.M. Hazard, X. Mi et al. Scalable Gate Architecture for a One-Dimensional Array of Semiconductor Spin Qubits. *Phys. Rev. Appl.* 6, 054013 (2016). [3] J.P. Zwolak, S.S. Kalantre, X. Wu *et al.* QFlow lite dataset: A machine-learning approach to the charge states in quantum dot experiments. PLOS ONE **13**(10): e0205844 (2018). [4] S.S. Kalantre, J.P. Zwolak, S. Ragole *et al.* Machine learning techniques for state recognition and auto-tuning in quantum dots. *npj Quantum Inf.* 5, 6 (2019).

